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We study the transport properties of a large class of locally confined Hamiltonian systems, in which

neighboring particles interact through hard-core elastic collisions. When these collisions become rare and

the systems large, we derive a Boltzmann-like equation for the evolution of the probability densities. We

solve this equation in the linear regime and compute the heat conductivity from a Green-Kubo formula.

The validity of our approach is demonstrated by comparing our predictions with the results of numerical

simulations performed on a new class of high-dimensional defocusing chaotic billiards.
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The understanding of Fourier’s law and the computation
of the heat conductivity in Hamiltonian systems as a func-
tion of temperature and of the physical parameters remains
to this day a challenging issue [1]. In particular, establish-
ing the necessary conditions the dynamics must satisfy so
as to justify a first principles based derivation of Fourier’s
law has been the subject of ongoing discussions.

As a generic model of heat transfer in insulating crys-
talline solids, one often considers a lattice of coupled
particles with nearest-neighbor interactions whose motion
obeys Hamilton’s equations. Thus consider N particles of
unit masses located on a one-dimensional lattice with
positions and momenta ðq;pÞ � fðqi;piÞg1�i�N , with

qi;pi 2 Rd. The Hamiltonian H takes the form

Hðp;qÞ ¼ XN
i¼1

�
p2
i

2
þ VðqiÞ þUðqi � qiþ1Þ

�
; (1)

where V represents the interaction with the external sub-
strate and U the nearest-neighbor interactions.

After Peierls’ work [2], all attempts to give a satisfactory
derivation of Fourier’s law in mechanical systems have
focused on the study of weakly anharmonic dynamics.
Using the Peierls-Boltzmann equation, recent works have
studied the effects of phonon collisions on the heat con-
ductivity [3–7]. In this context, the conductivity may be
interpreted as a collision frequency between phonons.

In this Letter, we focus on the opposite limit, namely,
extremely anharmonic interactions, and, under minimal
assumptions on the chaotic nature of the dynamics, identify
a class of models which display a universal response to
nonequilibrium thermal constraints. The motivation for
this study is twofold: first, the heat conductivity can be
computed from first principles and takes a simple form;
second, as pointed out in [8], such systems of locally
confined particles in interaction find concrete applications
in the study of aerogels, materials in which gas particles are
trapped in nanosize pores and rarely interact among them-

selves. Assuming the validity of a Boltzmann-like equation
to describe such systems of rarely interacting particles
when they become large, we show that the heat conduc-
tivity of such systems is generically equal to the average
frequency of interaction between the systems’ compo-
nents, i.e., irrespective of the detailed geometric properties
of the confinement mechanism. This will be checked in
detail by numerical simulations, showing the universality
and power of the Boltzmann approach to analyze the trans-
fer of heat in the mechanical systems we study.
To be specific, we consider the case of interaction po-

tentials which take only the values zero inside a region
�U � Rd with smooth boundary � of dimension d� 1,
and infinity outside. Likewise, the pinning potential V is
assumed to be zero inside a bounded region�V and infinity
outside, implying that the motion of a single particle
remains confined for all times. The regions �U and �V

being specified, the dynamics is equivalent to a billiard in
higher dimension. An important quantity in such models is
the average rate of collisions between nearest-neighbors
under equilibrium conditions. We will be specifically con-
cerned with the limit of rare collision events.
The shape of the region�V determines the nature of the

local dynamics. In Ref. [8], �V was chosen to be a semi-
dispersive billiard with bounded horizon, thus ensuring
strong chaotic properties of the dynamics. In particular
the fast decay of correlations of the local dynamics was
invoked to set up a stochastic equation describing the
energy exchange dynamics. It is our purpose to show that
this assumption can be relaxed: local ergodicity is enough
to warrant the identity between heat conductivity and
frequency of energy exchanges. We regard this as an
important result which further validates the analogy be-
tween this class of models and aerogels whose nanopores
need not have dispersing properties.
Examples of the simplest type of billiards we may con-

sider are periodic arrays of square boxes in two dimensions
in each of which a single hard disk particle moves freely,
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but can still perform collisions with neighboring disks by
interacting through the confining walls, for instance, pro-
vided we let the cells overlap a bit. The specific nature of
the interaction mechanism at play is, however, not relevant
in our formalism. We will instead consider point particles
moving freely in two-dimensional square boxes of unit
sides and interacting among nearest neighbors when the
Euclidean distance between them becomes equal to a
parameter which we denote by a. At that point, they
exchange their longitudinal velocities, i.e., the velocity
components in the direction of their relative motion. We
refer to this model as the square-strings model. The inter-
action may be depicted by attaching strings of lengths a
separating neighboring particles, as shown in Fig. 1. In this
case, we take �V ¼ ½�1=2; 1=2�2, and �U ¼ D2

ð�1;0ÞðaÞ,
the disk of radius awith center at (� 1, 0). We note that, in
the absence of interactions, the dynamics of the individual
particles is pseudointegrable; it is ergodic on the configu-
ration space for most values of the velocity directions, but
is known to be nonmixing. We will consider this model in
some details below and provide numerical evidence that
the analysis which follows applies to it.

This model can be compared with a simpler class of
complete exchange models, specified by square well po-
tentials, obtained from Eq. (1) with d ¼ 1, as a limit of
models with smooth interaction potentials. In this case,
�V ¼ ½�b; b� and �U ¼ ½�a; a�. Each particle on the
lattice moves freely on a one-dimensional cell of size 2b,
changing directions at the boundaries. The interaction
between a pair of particles acts when the difference be-
tween the positions of the two particles reaches the value a,
at which point they exchange their velocities.

In the general d-dimensional setup, the particles move
freely inside their respective cells, bouncing off the walls
elastically, until the vector qi � qiþ1 (respectively qi�1 �
qi) reaches the boundary �. The corresponding particles
then exchange the components of their velocities in the
direction normal to the boundary�, i.e., longitudinal to the
direction of their relative motion.

The Hamiltonian (1) may be written as a sum of local
terms, hiðp;qÞ ¼ p2

i =2þ VðqiÞ þ 1=2½Uðqi�1 � qiÞ þ
Uðqi � qiþ1Þ�. This allows one to define a function de-

scribing the local transfer of energy by computing the
variation in time of the local energy hi along the solutions
of the equations of motion, d

dt hiðp;qÞ ¼ ji�1 � ji, where

the local energy current between sites i and iþ 1 is defined
as ji � 1

2 ðpi þ piþ1Þ � rUðqi � qiþ1Þ, which, for hard-

core interactions, becomes

ji ¼ �1
2��ðqi � qiþ1Þjp?

iþ1 � p?
i jþ½ðp?

iþ1Þ2 � ðp?
i Þ2�;

(2)

where jxjþ ¼ x, if x � 0, and 0 otherwise, p?
i ¼ pi � n̂ is

the component of the vector pi in the direction of the unit
vector n̂, normal to the boundary �, and �� denotes the
delta function concentrated on this boundary. The first
factor corresponds to the localization of the collisions in
configuration space, the second one gives the rate at which
collisions occur and the last one corresponds to the ex-
change of longitudinal components of the kinetic energies.
Starting from the Liouville equation for the evolution of

probability densities on phase space, it is straightforward to
derive an equation for the evolution of the probability
density of a single particle in a given cell. It involves the
probability distribution of the pairs of particles which
consist of the particle itself and either of its nearest-
neighbors on the lattice. The Boltzmann approximation
simply amounts to assuming that this two-particle distri-
bution factorizes in terms of the one-particle distributions
fi at each site. To justify this assumption, one needs to
show that a version of molecular chaos holds in our mod-
els. Namely, that the dynamical variables involved in the
successive collisions between two neighbors are indepen-
dent at the times of collisions. For that purpose, we require
two ingredients: first, local correlations are typically de-
stroyed after a collision between neighboring particles;
second, the number of particles must be very large, so
that in the long run, the whole system plays the role of a
reservoir for the specified pair of nearest neighbors. How
these conditions are realized in the models we consider
and, in particular, in the square-strings model which we
test numerically, is not yet fully elucidated. We interpret
the first condition as requiring interactions to be rare
compared to the collisions within a single cell. In the

FIG. 1 (color online). Typical trajectories of the square-strings model, displayed for increasing values of a, color coded (shaded)
from blue (dark gray) to red (gray) according to their energies. Small and large arrows indicate initial and final velocities, respectively.
For large a, the system appears to be near-integrable, reflecting the rarity of interactions, but is nevertheless fully chaotic.
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square-strings model, it amounts to taking the maximal
separation close to the length of the diagonal joining

opposite corners of neighboring boxes (� ffiffiffi
5

p
), as in the

third panel of Fig. 1.
We denote by f ¼ ffiðp;q; tÞg1�i�N , the set of the mar-

ginal probability distributions of each particle in each cell.
The Boltzmann equation for this set of probability den-
sities is

d

dt
fiðp;q; tÞ ¼ �p � rqfi þ Lwfi þ Lc

i;iþ1ðfÞ þ Lc
i;i�1ðfÞ:

(3)

Here Lw accounts for the collisions of the particles with the
walls of their respective cells, and Lc

i;i�1 for the collisions

of the ith particle with the (i� 1)th, viz.

Lc
i;i�1ðfÞ ¼

Z
dpadq

0��ðq�q0Þjp? �p?
a jþ

	 ½fi�1ðpb;q
0Þfiðpc;qÞ� fiðp;qÞfi�1ðpa;q

0Þ�;
(4)

with p?
b ¼ p?, p?

c ¼ p?
a , pc � p?

c n̂ ¼ p� p?n̂, and

pb � p?
b n̂ ¼ pa � p?

a n̂. One can check that the distribu-

tion

�eq �
YN
i¼1

fiðpi;qiÞ ¼ Z�1
YN
i¼1

e��p2
i =21�V

ðqiÞ (5)

is stationary for any inverse temperature �. Applied to this
distribution, the advection term in Eq. (3) is zero except on
the cell borders where it cancels with Lwfi. �may be fixed
by imposing identical thermal boundary conditions at both
ends of the lattice.

When the system is set out of equilibrium by imposing
different temperatures at its boundaries, we proceed with a
standard Chapman-Enskog expansion around a local equi-
librium distribution,

�leq �
YN
k¼1

fkðpk;qkÞ ¼ Z�1
YN
k¼1

e��kp
2
k
=21�V

ðqkÞ; (6)

with �k ¼ �̂ðk=NÞ for some smooth function �̂, taking as
a small parameter the local temperature gradient. Plugging
Eq. (6) into (3), we observe that only terms of second-order
in the temperature gradient survive. This is in contrast with
the case of an ordinary gas of colliding particles. This
simplification occurs because the advection term of the
Boltzmann equation (3) acts only on the position variable
within each cell and therefore not as a gradient on the
lattice dependent variables. This means that local averages
with respect to the distribution (6) are identical to local
averages with respect to the true nonequilibrium stationary
state, denoted h�ineq, up to Oð1=N2Þ corrections.

In particular, one may compute the average current (2)
with respect to the measure (6) and get (with �i ¼ T�1

i ),

hjiineq ¼ ��ðTiÞðTiþ1 � TiÞ þOð1=N2Þ; (7)

where, �ðTiÞ ¼ h��ðqi � qiþ1Þjp?
i � p?

iþ1jþiTi
is readily

interpreted as the average collision frequency between the
neighbors i and iþ 1, with respect to a global equilibrium
measure at temperature Ti, Eq. (5). This computation
therefore shows that the conductivity �ðTiÞ, defined as

�ðTiÞ � lim
N!1 � hjiineq

Tiþ1 � Ti

; (8)

is identical to �ðTiÞ. Furthermore a simple scaling argu-
ment shows that �ðTiÞ ¼ �ðTiÞ ¼

ffiffiffiffiffi
Ti

p
�, where � denotes

the collision frequency computed at unit temperature.
Being the result of an equilibrium integration, the fre-
quency may be computed with arbitrary precision.
To get a better picture of the process that is described by

the Boltzmann equation (3), we linearize the equation
around the global equilibrium solution (5). Doing so, we
obtain an equation similar to (3), but with the collision
operators Lc

i;i�1 now replaced by Llin
i ,

d

dt
fiðp;q; tÞ ¼ �p � rqfi þ Lwfi þ 2Llin

i f; (9)

where the linearized collision operator Llin
i is obtained

from Eq. (4) by replacing fi�1 by equilibrium distributions
at common inverse temperature �.
The interpretation of the stochastic process described by

the linearized collision operator is straightforward: when
collisions take place, the particles velocities are updated as
though they collided with stochastic thermal walls at in-
verse temperature � [9]. At each collision, the new veloc-
ities are independent from the previous ones.
With this prescription, we now compute the conductivity

using the Green-Kubo formula, which is derived as fol-
lows. Integrated over time, the energy current between
sites i and iþ 1 takes the form

Jið½0; t�Þ ¼
Z t

0
jiðsÞds ¼ 1

2

X
0�ski�t

½p?
i ðski Þ2 � p?

iþ1ðski Þ2�;

(10)

where the ðski Þk2N are the successive collision times be-
tween particles i and iþ 1. The Green-Kubo formula reads
in our case,

�GKðTÞ ¼ 1

2NT2
lim
t!1

1

t

XN
i;k¼1

hJið½0; t�ÞJkð½0; t�ÞiT: (11)

Using the expression (2) and (10), translation-invariance,
and the independence of the transfer of energy at each
collision, we get, after some calculations,

�GKðTÞ¼ 1

8T2
h��ðq0�q1Þjp?

0 �p?
1 jþ½ðp?

0 Þ2�ðp?
1 Þ2�2iT;

(12)

which, after further computations turns out to be equal to
the collision frequency, �GKðTÞ ¼ �ðTÞ.
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The square-strings model displayed in Fig. 1 lends itself
to a detailed study of the dependence of the ratio �=� on
the parameter values a.

To this end we consider systems of varying sizes N with
both ends in contact with stochastic thermal baths at re-
spective temperatures T� ¼ 1

2 and Tþ ¼ 3
2 . This gives rise

to nonequilibrium stationary states with temperature pro-
files such as displayed in Fig. 2, which, as N increases,
approach the corresponding solution of the heat equation,

@x½�ðTðxÞÞ@xTðxÞ� ¼ 0, with �ðTðxÞÞ / ffiffiffiffiffiffiffiffiffiffi
TðxÞp

. The ratio
�=� is obtained by linearly extrapolating to N ! 1 finite
N measurements of the spatial averages of �ðTiÞ=�ðTiÞ,
with �ðTiÞ defined by Eq. (8) and �ðTiÞ the collision
frequency at the local temperature, as functions of 1=N.

These values are reported in Table I. Notice the excellent
agreement with the prediction � ¼ �, Eq. (12), as the value
of the parameter a gets closer to its maximal allowed value,
the limit of rare collisions, in close agreement with the
results presented in [8] for a class of coupled semidispers-
ing billiards. In particular, we underline that the parameter
range of validity of our result is very similar to that
observed in [8], which further validates that it is indepen-
dent of the detailed nature of the local dynamics.

To summarize, we have showed that the derivation of
Fourier’s law in a large class of locally confined particle
systems with hard-core interactions can be achieved from a
Boltzmann-type approach with the main result that, in the
appropriate limits, the heat conductivity is identified with
the collision frequency.

The same identity was derived in [8] in the context of
semidispersing billiards. The comparison is interesting
since, in contrast, chaos in the square-strings model results
from a defocusing mechanism which takes place after
particles interact. The identity between conductivity and
collision frequency therefore proves to be more general as

it accounts for the transport properties of systems lacking
the local mixing property. In fact, the only dynamical
property which is a priori necessary in our derivation is
ergodicity of the local dynamics, i.e., in the absence of
interactions. This property guarantees that two neighbors
always interact provided the coupling is switched on, and
that the fraction of time during which they interact is
proportional to a fixed geometrical factor which can be
adjusted by tuning the systems’ parameters.
The square-strings model is a perfect example of a

system which lends itself with ease to a precise and reliable
numerical analysis, while retaining the molecular chaos
property. The square-strings model is actually a kind of
higher dimensional fully chaotic stadium and displays a
very rich structure of dynamical properties.
We regard the proof of the molecular chaos hypothesis

upon which our computation relies as a promising and
realistic way to eventually obtain a clear picture of the
different mechanisms responsible for the origin of
Fourier’s law in a large class of mechanical systems.
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FIG. 2 (color online). Nonequilibrium temperature profiles of
the square-strings model with a ¼ 2:08, for increasing values of
N ¼ 5; 10; . . . ; 50. The black curve is the stationary solution of
the heat equation. The inset displays the corresponding mea-
surements of h�ðTiÞ=�ðTiÞi. The infinite N extrapolation, �=� ¼
1:0037, is the approximate heat conductivity reported in Table I.

TABLE I. Measurements of �=� for selected values of a,
obtained from data similar to Fig. 2. Our results indicate that
�=� ! 1 as a ! ffiffiffi

5
p

, in agreement with Eq. (12).

ffiffiffi
5

p � a �=�
ffiffiffi
5

p � a �=�
ffiffiffi
5

p � a �=�

1.029 6.000 0.618 1.892 0.322 1.320

0.870 3.159 0.511 1.632 0.236 1.0718

0.736 2.336 0.413 1.452 0.155 1.0037
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