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We consider two dielectric membranes suspended inside a Fabry-Perot cavity, which are cooled to a

steady state via a drive by suitable classical lasers. We show that the vibrations of the membranes can be

entangled in this steady state. They thus form two mechanical, macroscopic degrees of freedom that share

steady state entanglement.
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Introduction.—Optomechanical systems in which elec-
tromagnetic degrees of freedom couple to the mechanical
motion of mesoscopic or even macroscopic objects are
promising candidates for studying the transition of a mac-
roscopic degree of freedom from the classical to the quan-
tum regime. These systems can also be of considerable
technological use, e.g., for improved displacement mea-
surements [1] and the detection of gravitational waves [2].
Optomechanical devices have therefore attracted consid-
erable attention in recent years and micromirrors have been
cooled by radiation pressure [3]. In many setups, one of the
end mirrors of a Fabry-Perot cavity undergoes a mechani-
cal vibration and the coupling between cavity photons and
the mirror motion emerges because the resonance fre-
quency of the cavity depends on its length and hence on
the position of the mirror. Recently, devices have been
introduced in which the motion of a membrane that is
inserted into a Fabry-Perot cavity formed by rigid mirrors
couples to the cavity mode [4,5]. Whereas the ground state
and hence the quantum regime has not yet been reached in
experiments, this has been predicted to be achievable if the
mechanical oscillation frequency is larger than the cavity
linewidth [6], a regime that has recently been observed [7].
In the quantum regime, it is then interesting to explore en-
tanglement inmechanical, i.e.,macroscopicdegrees of free-
dom [8–10]. Possibilities to entangle the motion of a cavity
micromirror with the electromagnetic field in the cavity
have thus been explored in various approaches [11–15].

Here, we consider a Fabry-Perot cavity with two dielec-
tric membranes suspended in its interior (cf. Fig. 1) and
assume that two cavity resonances are driven by external
lasers. With suitable lasers the mechanical vibrations of the
membranes are cooled and asymptotically driven into a
steady state. We show that the mechanical vibrations of the
two membranes can be entangled in this asymptotic state.
Entanglement between mechanical oscillators has been
discussed previously but was either only found in the
transient regime [11] (not the steady state) or required
either a drive with nonclassical light [12] or mechanical
oscillators that had been precooled to very low tempera-
tures [13]. In contrast, our scheme generates steady state

entanglement between mechanical degrees of freedom by
cooling them via radiation pressure which only uses clas-
sical light sources. Our approach is not restricted to the
specific setup mentioned here but also applies to other
devices with optomechanical couplings [3] between two
mechanical and two cavity modes.
Model.—We consider a Fabry-Perot cavity with two

dielectric membranes in its interior (cf. Fig. 1). In this
setup the optical resonance frequencies of the cavity de-
pend on the positions of the membranes and can be derived
from the boundary conditions of the field in the cavity [16].
Let�3L (3L) and q1 (q2) be the positions of the left (right)
rigid mirror and the left (right) membrane and T the trans-
missivity of the membranes. We denote the field modes in
the left, center, and right part of the cavity by u1, u2, and
u3. For a mode with wave number k, the boundary con-
ditions read [16] u1ð�3LÞ ¼ u3ð3LÞ ¼ 0, u1ðq1 � 0Þ ¼
u2ðq1 þ 0Þ, u2ðq2 � 0Þ ¼ u3ðq2 þ 0Þ, du1ðq1�0Þ

dz �
du2ðq1þ0Þ

dz ¼k�u1ðq1Þ, and du2ðq2�0Þ
dz � du3ðq2þ0Þ

dz ¼ k�u2ðq2Þ,
where � ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� TÞ=Tp
. In analogy to [5], we make the

ansatz u1¼Asinðkðqþ3LÞÞ, u2¼BcosðkqÞþ ~BsinðkqÞ,
and u3 ¼ C sinðkðq� 3LÞÞ and obtain the transcenden-
tal equation, ½cosð3kLÞ � � cosðkq1Þ sinðkq1 þ 3kLÞ� �
½sinð3kLÞ þ � sinðkq2Þ sinðkq2 � 3kLÞ� þ ½cosð3kLÞ þ
� cosðkq2Þ sinðkq2 � 3kLÞ�½sinð3kLÞ þ � sinðkq1Þ �
sinðkq1 þ 3kLÞ� ¼ 0, from which the optical reso-
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FIG. 1 (color online). The setup: Two mechanically vibrating
membranes (brown) are suspended inside a Fabry-Perot cavity,
which is driven by external lasers (green). Dissipation occurs via
mechanical damping (brown) and cavity decay (blue).
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nance frequencies ! ¼ kc (c is the speed of light) can be
found.

To obtain optomechancial coupling between two optical
and two independent mechanical modes (see below), we
choose the equilibrium positions of the membranes, q01
and q02, to be q01 ¼ �L and q02 ¼ 2L. For nonvibrat-
ing membranes, the optical resonance frequencies of the
membrane cavity systems are then given by !an ¼ n�c

L ,

!bn ¼ n�c
L � �c

2L þ c
2L cos

�1ð� cos�
2 Þ, !b0n ¼ n�c

L � �c
2L �

c
2L cos

�1ð� cos�
2 Þ, and !cm ¼ m�c

3L þ �c
6L � �c

3L , where n and

m are positive integers. For membranes with low trans-
missivity, the frequencies !an, !bn, and !cm with m ¼ 3n
lie close together, whereas !b0n is separated from this
triplet and we thus focus on !an, !bn, and !cm.

In the case of vibrating membranes, the optical reso-
nances depend on the motion of the membranes and their
frequencies become functions of q1 and q2, e.g.,
!anðq1; q2Þ. (The assumption that the optical resonances
only depend on the membrane positions, not their mo-
menta, is only valid if the membrane oscillations are
much slower than the optical round-trip time, i.e., !m �
j!x �!yj for x; y ¼ an; bn; cm [17], which we confirm

below.) To obtain these functions, we write them as a
power series up to linear order in the membrane positions,
!xðq1; q2Þ ¼ !xðq01; q02Þ þ �x1ðq1 � q01Þ þ �x2ðq2 �
q02Þ for x ¼ an; bn; cm (q01 ¼ �L and q02 ¼ 2L), expand
the transcendental equation up to linear order in qj � q0j
(j ¼ 1; 2), and solve it for zeroth and linear order sepa-
rately to obtain !xðq01; q02Þ ¼ !x, �x1, and �x2 for x ¼
an; bn; cm. For our choice of the membrane rest positions,
q01 ¼ �L and q02 ¼ 2L, the mode !an does not couple to
the membrane motions, �a1 ¼ �a2 ¼ 0, and we discard it.
The other couplings are �b1 � ð 110 þ 3

400TÞ n�cL2 , �b2 � ð25 �
39
200TÞ n�cL2 , and �c1 ¼ ��c2 � �ð 445 � 28

675TÞ m�c
L2 for T � 1

and n;m � 1. Higher order terms in the expansion of the
frequencies give rise to additional coupling terms, also for
!an, but these are negligible compared to the linear cou-
plings. For symmetric membrane rest positions (q01 ¼
�L, q02 ¼ L), one would get �b1 þ �b2 ¼ �c1 þ �c2 ¼ 0
and the photons would only couple to the breathing mode,
q1 � q2, whereas the center of mass mode, q1 þ q2, would
not be cooled. Note also the two optical modes are needed
to cool two mechanical modes.

The corresponding Hamiltonian that describes the mo-
tion of the membranes and the cavity modes reads

H ¼ !m

2

X
j¼1;2

ðp2
j þ q2j Þ þ

X
x¼bn;cm

�
�x

2
ax þ H:c:

�

þ X
x¼bn;cm

�
�x þ

X
j¼1;2

�xjqj

�
ayx ax; (1)

where pj and qj are the momentum and position of mem-

brane j (j ¼ 1; 2). Both membranes have the same effec-
tive mass m and mechanical resonance frequency !m, and
the optical modes with creation (annihilation) operators

aybnðabnÞ and aycmðacmÞ are driven by classical lasers with

Rabi frequencies �bn and �cm. We have redefined the
position variables qj � q0j ! qj and write the optical

modes in frames that rotate at the frequencies of their
respective driving lasers, �x ¼ !x0 �!x;laser [18]. In Eq.

(1), we have also assumed that each laser only drives one
cavity mode, which sets an upper bound to the permissible

Rabi frequencies, j�bnj;j�cmj�j!bn�!cmj� 5
12c

ffiffiffiffi
T

p
=L

(to leading order in T � 1). This in turn limits the amount
of entanglement that can be generated. The linear opto-
mechanical couplings �xjqj can be exploited to cool the

membranes and drive them into a steady state. They fur-
thermore generate entanglement between the mechanical
vibrations via the optical modes as we will show.
Equations of motion.—Taking into account cavity decay

and mechanical damping of the membranes, the
Hamiltonian (1) gives rise to the Langevin equations [18],

_a x¼�i

�
�xþ

X
j¼1;2

�xjqj� i
�x

2

�
ax� i

�?
x

2
þ ffiffiffiffiffiffi

�x

p
ainx ;

_qj¼!mpj; _pj¼�!mqj��

2
pj�

X
x

�xja
y
x axþ�j;

(2)

where dots denote time derivatives and ½��? a complex
conjugate. ainx and �j are the optical and mechanical input

noises and �x and � cavity decay and mechanical damping
rates. The relevant nonzero correlation functions of the
noise operators are hainx ðtÞðainy Þyðt0Þi ¼ �xy�ðt� t0Þ for

x; y ¼ bn; cm and h�jðtÞ�lðt0Þi ¼ �
2 ð2n!m

þ 1Þ�jl�ðt� t0Þ
for j; l ¼ 1; 2, where n!m

¼ ½expð@!m=kBT Þ � 1��1 is

the thermal phonon number of the mechanical environment
at temperatureT , kB is Boltzmann’s constant, and we have
assumed kBT � @!m.
We split the operators in (2) into their steady state

expectation values and quantum fluctuations, ax ¼ cx þ
�x, pj ¼ Pj þ �pj, and qj ¼ Qj þ �qj. The constant

steady state expectation values are given by the equations

�?
x

2
¼ �

�
�x � i

�x

2

�
cx; Qj ¼ �X

x

�xj

!m

jcxj2; (3)

and Pj ¼ 0, where �x ¼ �x þ �x1Q1 þ �x2Q2.

We are interested in a regime of high photon numbers in
the cavity, in which the steady state expectation values are
much larger than the quantum fluctuations. In this regime
we can neglect all terms of higher than linear order in the
fluctuations �x, �pj, and �qj in (2). (We have confirmed

this approximation numerically.) The asymptotic state of
the quantum fluctuations for the linearized equations is
then a zero mean Gaussian state which is fully character-
ized by its covariance matrix Vij ¼ 2RehðOi � hOiiÞ�
ðOj � hOjiÞi, where O ¼ ð�q1; �p1; �q2; �p2; Xbn; Ybn;

Xcm; YcmÞ with Xx ¼ ð�x þ �y
x Þ=

ffiffiffi
2

p
and Yx ¼ �ið�x �

�y
x Þ=

ffiffiffi
2

p
. We solve the linearized Langevin equations for

the fluctuations to obtain the steady state covariance matrix
V in the same way as in [14]. From V, the steady state
entanglement as measured by the logarithmic negativity
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EN (EN � 0 means the state is entangled) can then be
computed [19] (see Ref. [20] for the technical details).

Steady state entanglement —We consider an example
where both membranes have transmissivity T ¼ 0:2, ef-
fective mass of m ¼ 10�9 g, and mechanical resonance
frequency of !m ¼ 106 Hz [4]. The cavity is 6 mm long,
hence L ¼ 1 mm. For driving lasers of 1000 nm wave-
length, the closest cavity modes have numbers n ¼ 2�
103 and m ¼ 3n ¼ 6� 103. For these parameters, the
optomechanical couplings attain the values �bn;1 ¼
1:90 kHz, �bn;2 ¼ 6:75 kHz, and �cm;1¼��cm;2¼
�4:53 kHz. (We work in units, where �q1 and �q2 are

dimensionless and given in multiples of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=ðm!mÞ

p
.)

Cooling to the quantum mechanical regime is possible if
the mechanical oscillation frequency is larger than the
optical linewidth [6,7] and we thus assume �bn ¼ �cm ¼
!m=10. The mechanical Q is taken to be Q ¼ 107, con-
sistent with [4]. For the mechanical environment, we con-
sider two temperature values, T ¼ 8 mK (n!m

¼ 1000)

and T ¼ 100 mK (n!m
¼ 13085).

Figure 2 shows the entanglement of the two mechanical
vibrations in the steady state measured by the logarithmic
negativity EN as a function of the steady state electromag-
netic fields in the cavity, cbn and ccm. Since the Hamil-
tonian (1) only contains the photon numbers, the entangle-
ment is insensitive to the phases of fields in the cavity and
thus also to the phases of cbn and ccm. The linearization of
Eq. (2) requires jcbnj; jccmj � 1. In the left plot, we have
jcbnj � 30, but we also find EN ¼ 0:195 for jcbnj ¼ 60,
jccmj ¼ 386:4, �bn ¼ 4:2 MHz, and �cm ¼ 20:9 MHz.
The values for Q and T, we assume here, are currently
hard to achieve simultaneously, but the entanglement per-
sists in a larger parameter range as shown in Fig. 3(d).

The Rabi frequencies �bn and �cm that are needed to
generate the values of cbn and ccm in Fig. 2 are less than
11 GHz (left plot) and 23 GHz (right plot). The difference
between the resonance frequencies !bn and !cm on the
other hand is j!bn �!cmj � 57 GHz, and the separation
of these two modes from other resonances is much larger,
so that the lasers indeed only drive one resonance mode as
assumed in Eq. (1). j!bn �!cmj / L�1 so that j!bn �
!cmjwould even be larger for a shorter cavity. By reducing
the cavity length one could thus employ stronger driving
lasers and create substantial entanglement even at higher
T . The input laser powers Px are related to the Rabi
frequencies by Px ¼ @!x;laserj�xj2=ð4�xÞ, which implies

that laser powers between 0.6 pWand 60 �W are required.
Furthermore,!m � j!bn �!cmj and the derivation of the
cavity resonances and consequently the form of
Hamiltonian (1) are well justified.

The steady states are furthermore characterized by pho-
non numbers of the vibration fluctuations, nj ¼ 1

2 ð�p2
j þ

�q2j � 1Þ, of n1	3;n2	5 for T ¼8mK and n1	5, n2	
10 for T ¼100mK, and an entropy of the reduced den-
sity matrix of the vibrations, Sm¼�Trphotonsð	log2	Þ	4,

for bothT ¼ 8 mK andT ¼ 100 mK. The steady state is

thus indeed in the quantum regime. The linearized
Langevin equations can be cast in matrix form _O ¼ OAþ
n, where n is the vector of the noises [14]. Here, all
eigenvalues of A have negative real parts below 1 kHz,
which ensures that there is a unique steady state that is
reached within milliseconds.
To further corroborate the robustness of the entangle-

ment, we studied its dependence on fluctuations in the
driving lasers and on variations in several system parame-
ters. The results for T ¼ 100 mK are shown in Fig. 3.
Figure 3(a) shows the dependence of EN on the detunings
of driving lasers, �bn and �cm (cbn ¼ 60 and ccm ¼ 486),
Fig. 3(b) the dependence on the cavity decay rates �bn and
�cm, Fig. 3(c) the dependence on the membranes resonance
frequency !m and its effective mass m, and Fig. 3(d) the
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FIG. 2 (color online). The entanglement of the two mechanical
vibrations in the steady state measured by the logarithmic
negativity EN as a function of cbn and ccm. Left plot: �bn ¼
4:07 MHz, �cm ¼ 20:84 MHz, and T ¼ 8 mK (n!m

¼ 1000).

Right plot: �bn ¼ 6:12 MHz, �cm ¼ 33:18 MHz, and T ¼
100 mK (n!m

¼ 13 085). The remaining parameters are !m ¼
1 MHz, m ¼ 10�9 g, T ¼ 0:2, L ¼ 1 mm, n ¼ 2� 103, ¼
3n ¼ 6� 103, q01 ¼ �L, q02 ¼ 2L, �bn ¼ �cm ¼ !m=10,
and Q ¼ 107 for both plots. �bn, �cm, cbn, and ccm have been
optimized numerically for each case.
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FIG. 3 (color online). The steady state entanglement of the two
mechanical vibrations for T ¼ 100 mK, cbn ¼ 60, and ccm ¼
486. (a) EN as a function of �bn and �cm, (b) EN as a function of
�bn and �cm, (c) EN as a function of m and !m, and (d) EN as a
function of Q and T. All other parameters as in Fig. 2.
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dependence on the mechanical Q and the environment
temperatureT . In all cases there is a substantial parameter
region which shows entanglement. Note that we assign
EN ¼ 0 to all points where there is no well-defined steady
state due to heating, i.e., where an eigenvalue of A has a
positive real part. Furthermore, our driving fields are opti-
mized for the values in Fig. 2. For different values of �bn,
�cm, Q, �, !m, or m, slightly modified laser drives will
yield more entanglement.

One can obtain some intuitive indications why the mem-
brane vibrations become entangled. The Hamiltonian cor-
responding to the linearized Langevin equations for the

fluctuations �p1, �q1, �p2, �q2, �bn, and �cm is H ¼
!m

2

P
jð�p2

j þ �q2j Þ þ
P

x�x�
y
x �x þ P

j;xð�xjcx�qj�
y
x þ

H:c:Þ. In the parameter regime of interest, we have �x �
j�xjcxj and the photon degrees of freedom can be adiabati-

cally eliminated to obtain the effective Hamiltonian

H ¼!m

2 ð�p2
1þ�p2

2Þþ!mþ
1

2 �q21þ!mþ
2

2 �q22þ
12

2 �q1�q2,

where 
j ¼ �2
P

x�
2
xjjcxj2=�x and 
12 ¼

�4
P

x�x1�x2jcxj2=�x. The ground state of H and hence
states close to it are entangled in regimes where j
12j �
!m or larger, which is the case for the parameters in Fig. 2.

Entanglement verification.—To verify the created entan-
glement quantitatively in an experiment, several quadra-
ture correlations need to be measured [9,21]. This may be
achieved by employing at least two further weak probe
lasers, similar in spirit to the scheme in [14], which drive
cavity modes that do not participate in the entanglement
generation, i.e., modes with n � 2� 103 or m � 6� 103.
The equation of motion for the fluctuations of the probe

field, �y, reads _�y¼�i�y�yþ
ffiffiffiffiffiffi
�y

q
�in
y � i

cyffiffi
2

p ð�y1C1 þ
�y2C2Þ in a frame that rotates at the frequency of the probe

laser, !L. Here �qj ¼ 1ffiffi
2

p ðCj þ Cy
j Þ and we have assumed

j�jcyj � !m and applied a rotating wave approximation.

In a Fourier transformed picture in the laboratory frame

this equation reads �ið!��yÞ�yð!Þ ¼
ffiffiffiffiffiffi
�y

q
�in
y ð!Þ �

i
cyffiffi
2

p ½�y1C1ð!�!LÞ þ �y2C2ð!�!LÞ�. Applying stan-

dard input-output formalism [18], aouty ð!Þ ¼ffiffiffiffiffiffi
�y

q
½cy�ð!�!LÞ þ �yð!Þ� � ½ciny �ð!�!LÞ þ �in

y �, the
output field is given by aouty ð!Þ ¼ � !��y�i�y

!��y
�in
y ð!Þ þ

ð
ffiffiffiffiffiffi
�y

q
cy � ciny Þ�ð! � !LÞ þ cy

!��y

ffiffiffiffi
�y

2

q
½�y1C1ð! � !LÞ þ

�y2C2ð! � !LÞ�, where ciny is the input field of the probe

laser. The background terms cy and ciny only contribute for

! ¼ !L. Homodyne measurements on the output field
thus allow one to measure �y1C1ð!�!LÞ þ �y2C2ð!�
!LÞ. The second probe laser on a mode with different �y1

and �y2 measures a different linear combination of C1 and

C2 and hence a different quadrature. As the steady state of
the membranes allows for repeated measurements, two
probe lasers enable a reconstruction of the covariance
matrix V, where the precision is limited by the input noise
�in
y (see Ref. [20] for the technical details).

Conclusions.—The scheme presented here allows one to
generate steady state entanglement of the motion of two
dielectric membranes, which are suspended inside a Fabry-
Perot cavity with a cavity decay rate that is lower than the
mechanical resonance frequency of the membranes. The
scheme only requires a drive by classical light and can
work for environment temperatures up to a few kelvin.
With increasing environment temperatures, stronger driv-
ing lasers and therefore shorter cavities with larger mode
separation are needed. Measurements on the output fields
of additional weak probe lasers can be used to verify the
created entanglement.
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