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We introduce the concept of directional coupling, i.e., the selective transfer of a state between adjacent

quantum wires, in the context of quantum computing and communication. Our analysis rests upon a

mathematical analogy between a dual-channel directional coupler and a composite spin system.
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Introduction.—Directional coupling, that is the ex-
change of power between guided modes of adjacent wave-
guides, has many applications in (opto)electronics [1–3].
For instance, directional couplers (DCs) may perform a
number of useful functions in thin-film devices such as
power division, switching, frequency selection, and (de)
multiplexing. Typically, a dual-channel DC is a passive
device with two input and two output ports. The ports are
the ends of two waveguides, the so-called source and drain
channels, which are brought in close proximity over a
certain region. Varying a control parameter, one may
achieve any division of a signal entering the source chan-
nel, between the outputs of the two channels.

From the theoretical point of view, directional coupling
can be treated in the framework of coupled-mode theory,
where one deals with equations of motion for the complex
amplitudes pertaining to the two forward-propagating
guided modes [1,2]. Usually, back reflection is absent
due to technical reasons (e.g., in electronic devices an
externally applied voltage may determine the propagation
direction for electrons), while in certain configurations
pertaining to optical waveguides, it has been shown that
excitation of backward-propagating modes can be sup-
pressed by applying adiabatic mode-coupling techniques
[4,5], which require an elaborate sequence of pulses.

In this Letter, we propose a dual-channel DC for quan-
tum computing and short-distance communication pur-
poses. In analogy to conventional DCs, a dual-channel
quantum DC (QDC) can be defined as a device which
allows the selective transfer of quantum signals (i.e., quan-
tum states of information carriers [6]) between two adja-
cent quantum channels. A QDC is expected to be the key
element for various useful quantum information processing
tasks, such as quantum switching, (de)multiplexing, etc.

The information carriers involved in some of the most
promising proposals for large-scale quantum computing
are not compatible with photons [7]. Hence, the engineer-
ing of perfect quantum channels for specific information
carriers has recently attracted considerable interest [8]. In
contrast to their (opto)electronic counterparts, quantum
channels are discrete as they typically pertain to arrays of
coupled quantum objects (sites). An excitation created
somewhere in the array will unavoidably propagate in
both directions and, after some time, various sites of the

array may be occupied with different probabilities. Despite
such delocalization effects, it has been shown that an
excitation can be transferred in a perfect and deterministic
way between the two ends of the channel by engineering
the couplings between adjacent sites [9,10].
Given two perfect quantum channels, our task here is to

define interchannel interactions, for which the entire sys-
tem operates as a dual-channel QDC. In other words, we
will discuss the conditions under which a ‘‘flying’’ qubit
[6], prepared initially in the first site of one of the channels,
can be transferred to the last site of either of the two
channels, in a controlled and deterministic manner. We
are interested in symmetric configurations with minimal
external control, i.e., without elaborate sequences of time-
dependent pulses and measurements.
Perfect quantum channel.—A Hamiltonian for perfect

state transfer (PST) along a chain of N coupled nearly
identical sites is of the form (@ ¼ 1)

Ĥ PST ¼ XN

j¼1

"ĉyj ĉj þ
XN�1

j¼1

�j;jþ1ðĉyj ĉjþ1 þ ĉyjþ1ĉjÞ;

(1a)

where, ĉyj is the creation operator for an excitation on the

jth site of the channel with energy " [11], and�j;jþ1 is the

coupling between adjacent sites. Consider a situation when
a single excitation is prepared initially in the first site of the
chain. The Hamiltonian (1a) preserves the number of ex-
citations, and thus the system is restricted to the one-
excitation Hilbert space throughout its evolution. The com-

putational basis can be chosen as fjjig, where jji � ĉyj jf0gi
is the state with one excitation on the jth site, and jf0gi
denotes the vacuum state of the system. As has been shown
in [9,10], the chain acts as a perfect quantum channel; i.e.,
one can achieve PST from the 1st to the Nth site by
judiciously engineering the coupling strengths according
to

�j;jþ1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � jÞj

q
: (1b)

Moreover, setting J ¼ ðN � 1Þ=2 and m ¼ j� ðN þ
1Þ=2, one may define a one-to-one correspondence be-
tween the angular-momentum (AM) basis fjJ;mig and
the computational basis fjjig. In view of this correspon-
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dence, the evolution of the excitation under the influence of
the PST Hamiltonian (1) is analogous to the evolution of
the spin-J system, which is rotated around the x axis [12].
In the following we discuss how such a quantum channel
can be used as a building block for a QDC. Our analysis
rests upon the aforementioned mathematical analogy,
which turns out to be a rather useful theoretical tool.

Quantum directional coupler.—In analogy to its (opto)
electronic counterparts, a dual-channel QDC involves two
nearly identical channels, the source (s) and the drain (d).
Each channel consists of N > 2 nearly identical sites de-
noted by (�; j), with � 2 fs; dg and 1 � j � N. Accord-
ingly, the computational basis of the system can be chosen
as fj�; jig, with j�; ji denoting an excitation on the jth site
of channel �. The first two sites fðs; 1Þ; ðd; 1Þg play the role
of the two input ports, whereas the output ports are repre-
sented by the last sites fðs; NÞ; ðd; NÞg.

The source and the drain channels are described by a
PST Hamiltonian of the form (1). Our task is to define
interactions between them so that an excitation initially
occupying one of the input ports can be transferred to
either of the two output ports in a controlled and determi-
nistic way. More precisely, consider the excitation initially
occupying the first site of the source channel [13]; i.e., the
device is initially prepared in the state

j�Cð0Þi ¼ js; 1i: (2)

At well-defined time instants, a dual-channel QDC should
be capable of performing perfectly the following trans-
formations

js; 1i ! js;Ni; (3a)

js; 1i ! jd;Ni (3b)

apart, perhaps, from an unimportant global phase.
Moreover, one should be able to switch between (3a) and
(3b) by adjusting a set of parameters controlling the inter-
channel interactions.

We discuss two different configurations of sites that may
operate as dual-channel QDCs. Both of them pertain to a
grid of M� N nearly identical sites with preengineered
couplings, although their operation relies on fundamentally
different principles. In second quantization, the dynamics
of a single excitation in such a two-dimensional structure is
described by a Hamiltonian of the form

Ĥ M�N ¼ 1

2

XM

i;i0¼1

XN

j;j0¼1

Gi;i0
j;j0 ðâyi;jâi0;j0 þ ây

i0;j0 âi;jÞ; (4)

where âyi;j creates an excitation on the jth site of the ith row
with energy " ¼ Gi;i

j;j, while the coupling strength between

two different sites (i; j) and (i0; j0) is denoted by Gi;i0
j;j0 , with

Gi;i0
j;j0 ¼ Gi0;i

j0;j. In this formalism, the two outermost chains

represent the source and the drain channels (i.e., s � 1 and
d � M � 2), while any intermediate sites (i; j) with i �
f1;Mg pertain to the coupler. Depending on the particular

quantum-computing realization under consideration, each
site of the grid may correspond, for instance, to a quantum
dot or a superconducting qubit.
In general, the two channels of a QDC may be coupled

directly or indirectly through their interaction with another
system (coupler) placed between them. To describe the
operation of the device in a unified theoretical framework,

we may introduce two AM operators Ĵh and Ĵv acting on
different subspaces, with

Jh ¼ ðN � 1Þ=2; mh ¼ j� ðN þ 1Þ=2; (5a)

Jv ¼ ðM� 1Þ=2; mv ¼ i� ðMþ 1Þ=2: (5b)

An orthonormal basis for the state space of the spin-J�
system (with � 2 fh; vg) can be chosen as fjJ�;m�ig,
where jJ�;m�i are degenerate eigenvectors of the operator
Ĵ2�. As we will see later on, this degeneracy specifies the
class of QDCs, whose operation can be simulated by the
dynamics of the composite spin system with basis states
fjJv;mv; Jh;mhig, where jJv;mv; Jh; mhi � jJv;mvi �
jJh; mhi.
The role of the spin-Jh system is to describe the dynam-

ics of the excitation in either of the two nearly identical
channels (source or drain). For fixed channel parameters
fN; ";�g, one may define a one-to-one correspondence
between the basis states fjjig and fjJh; mhig by means of
Eq. (5a); i.e., we have

jJh;mhi � jji: (6a)

On the other hand, the spin-Jv system has been introduced
for the description of the interchannel dynamics, with the
only convention being

jJv;�Jvi � jsi; jJv; Jvi � jdi: (6b)

In view of Eqs. (5b) and (6b), a dual-channel QDC with
directly coupled channels is described by a spin-1=2 par-
ticle (i.e., for M ¼ 2), whereas the presence of a coupler
between the two channels is represented by a spin-Jv
particle with Jv > 1=2 (i.e., for M> 2). In the latter
case, the spin states jJv;mvi with mv � �Jv correspond
to the coupler.
In AM representation, the dynamics of a single excita-

tion in a dual-channel QDC can be described by a
Hamiltonian of the form

Ĥ ¼ Ĥ h þ Ĥ v; (7)

where Ĥ � � Ĥ
ð0Þ
� þ V̂ � refers to the spin-J� system

only. The basis states fjJ�;m�Þig are degenerate eigenstates
of the corresponding unperturbed Hamiltonian Ĥ

ð0Þ
� �

"�Ĵ
2
�, while V̂ � is the coupling between various states

fjJ�;m�ig. Because of the degeneracy, conventions (6)
imply that a dual-channel QDC can be described in the
present theoretical framework if the coupler is on reso-
nance with both channels and, for a given channel, all the
states j�; ji have the same energy.
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The initial condition (2) reads in AM representation

j�AMð0Þi ¼ jJv;�Jv; Jh;�Jhi; (8)

whereas transformations (3) are in one-to-one correspon-
dence with the following transformations:

jJv;�Jv; Jh;�Jhi ! jJv;�Jv; Jh; Jhi; (9a)

jJv;�Jv; Jh;�Jhi ! jJv; Jv; Jh; Jhi: (9b)

Transformation (9a) pertains to the evolution of the
spin-Jh system only, and is thus expected to be implement-

able by Hamiltonian (7) for V̂ v ¼ 0 (no interchannel
coupling). Recall now that the dynamics of the spin-Jh
system have to describe accurately the evolution of the
excitation in either of the two (nearly identical) channels.
Given that both channels are described by a PST
Hamiltonian of the form (1), with fixed parameters
fN; ";�g, we can easily specify the form of the

Hamiltonian Ĥ h by expressing the PST Hamiltonian (1)
in the basis fjJh;mhig. Using correspondences (5a) we find
Ĥ h ¼ "hĴ

2
h þ 2�Ĵh;x, where "h ¼ "=½JhðJh þ 1Þ�, and

Ĵh;x is the x component of the vector Ĵh. Under the influ-

ence of Ĥ h, the initial state of the isolated spin-Jh system
undergoes a rotation around the x axis, and the transfor-
mation (9a) takes place at time � ¼ �=ð2�Þ. Having
specified the first part of Hamiltonian (7), we have to

determine the interchannel interaction V̂ v, for which
transformation (9b) takes place at a well-defined time
instant. We discuss two different solutions.

The transformation (9b) involves a simultaneous rota-
tion of the initial states of both spins. This leads us to

introduce the total angular momentum Ĵ ¼ Ĵh þ Ĵv, with
jJh � Jvj � J � Jh þ Jv and jmj � J, while the corre-
sponding basis states fjJ;mig can be expanded on the basis
fjJv;mv; Jh; mhig in the usual way [14]. In the basis
fjJ;mig, the initial condition (8) reads j�AMð0Þi ¼
jJ;�Ji, while for the transformation (9b) we have
jJ;�Ji ! jJ; Ji. In view of the previous discussion, this
transformation can be performed by defining the interchan-

nel coupling V̂ v, such that Ĥ 	 2�Ĵx. One may choose

V̂ v ¼ 2KĴv;x, with K denoting the interchannel coupling

strength. The total Hamiltonian (7) then reads

Ĥ ¼ "hĴ
2
h þ "vĴ

2
v þ 2�Ĵh;x þ 2KĴv;x; (10)

and acquires the desired form for K ¼ �.
The Hamiltonian (10) describes the operation of a per-

fect dual-channel QDC in an AM representation. Hence, a
quantum network involving a number of coupled sites may
operate as a QDC if the Hamiltonian of the entire system in
an AM representation acquires the form (10). For instance,
one can readily show, using Eqs. (5), that Hamiltonian (4)
reduces to Hamiltonian (10) when adjacent sites are

coupled with strengths Gi;i
j;jþ1¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðN�jÞp

and Gi;iþ1
j;j ¼

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðM� iÞp

, which incidentally underscores the usefulness
of the AM representation. This coupling configuration has
also been investigated in [15], albeit in a different context.
The present work, however, reveals another aspect of such
a structure, namely, its use as a QDC with source and drain
channels the two outermost chains, and control parameter
K.
The main disadvantage of this configuration, however, is

that all the sites of the source channel have to be coupled
(directly or indirectly) to the corresponding sites of the
drain channel via nearest-neighbor interactions. Depend-
ing on the physical realization under consideration, this
might be very restrictive as it may imply that the two
quantum channels have to be close to each other. The
question therefore is, can one achieve directional coupling
between two chains by defining interchannel interactions
for a certain number of sites only?
Clearly, this question cannot be answered in the frame-

work of Hamiltonian (7), as it describes independent evo-

lutions of the vectors Ĵv and Ĵh. Instead, one has to
consider more general Hamiltonians involving coupled
angular momenta. Consider, for instance, an interchannel

interaction Ŵ , represented by the coupling between a spin
Jv ¼ 1=2 and an angular momentum Jh ¼ 1, such that

Ŵ ¼ KĴv;yĴh;y. In view of the previous discussion, we

may write the total Hamiltonian

Ĥ ¼ "hĴ
2
h þ "vĴ

2
v þ 2�Ĵh;x þ KĴv;yĴh;y; (11)

and transformation (9a) can be achieved for K ¼ 0, when

only the vector Ĵh is rotated around the x axis. Turning on
the interchannel interaction, i.e., setting K � 0, both vec-

tors Ĵh and Ĵv can be rotated simultaneously around the y
axis. In this case, the initial state of the system evolves

under the influence of both V̂ h and Ŵ . Hence, we have
two distinct evolution routes that may interfere either con-
structively or destructively, and the transformation (9b) can
be achieved by choosing judiciously the ratio K=�.
Indeed, for the initial condition (8), one can show that

the transformation (9b) occurs at t ¼ �=
ffiffiffi
2

p
for K ¼ �4�.

The Hamiltonian (11) can be implemented in the 2� 3

grid depicted in Fig. 1(a), for g ¼ ffiffiffi
2

p
� and � ¼ K=

ð2 ffiffiffi
2

p Þ. Such a configuration can be used as a coupler for se-
lective transfer of an excitation between two chains involv-
ing an arbitrary odd number of sites N > 3. As shown in
Fig. 1(b), the coupler involves intermediate sites of the two
chains, with indices jc ¼ ðN þ 1Þ=2 and j� ¼ jc � 1. The

corresponding coupling constants are Gi;i
j�;jc ¼ Gi;i

jc;jþ ¼ g,

Gs;d
j�;jc ¼ �Gd;s

j�;jc ¼ �, Gs;d
jc;jþ ¼ �Gd;s

jc;jþ ¼ �. In spin net-

works, the adjustment of geometric phases is possible by
looping around magnetic fields along the relevant sections
[16], while for optical networks one may use phase
shifters.
Outside the coupler, only neighboring sites of the same

channel are coupled according to Eq. (1b); i.e., we have
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Gi;i
j;jþ1 ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðN � jÞp

for i ¼ fs; dg. A qubit state initially

prepared at the input port (s; 1) can be transferred selec-
tively to either of the two output ports fðs; NÞ; ðd;NÞg at
time t ¼ � by adjusting the ratio g=�. In particular, the

transformation (9a) is performed for g ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN2 � 1Þ=4p

and � ¼ 0, whereas transformation (9b) takes place for

g ¼ � ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðN2 � 1Þ=8p

. For the sake of illustration, in
Fig. 2 we present numerical results pertaining to the trans-
fer of a single excitation between two chains ofN ¼ 7 sites
each. The results have been obtained through the solution
of the Schrödinger equation in the computational basis.
The excitation, which occupies initially the site (s; 1), splits
into two parts at the entrance of the coupler (not shown
here). The two parts follow different paths and they split
into smaller fractions in the middle of the coupler. The
various fractions acquire different phases as they propagate
through the sections of the coupler, and they interfere
constructively only on the site (d; jþ). In closing, it is
worth pointing out that a four-site configuration similar
to Fig. 1(a) may operate as a Hadamard gate [16], and one
may consider judicious combinations of such gates for

directional coupling between two channels as well. Our
three-site configuration, however, cannot be expressed in
terms of Hadamard gates.
Summary and outlook.—We have introduced the notion

of QDC in the context of quantum computation and com-
munication, presenting also a general mathematical anal-
ogy to a composite spin system. Employing this analogy,
we have been able to specify criteria for perfect and
deterministic directional coupling of ‘‘flying’’ qubit states
[6] between two quantum channels that rely on existing
schemes for state transfer. The present work does not cover
all the possible solutions to the problem of directional
coupling, which is very general and is not associated
with a particular coupling configuration. A number of
interesting questions, such as the existence of other con-
figurations for directional coupling between two or more
quantum channels, the transfer of arbitrary multiqubit
states, the effect of imperfections, as well as the extension
of (de)multiplexing processes to the quantum world, de-
serve further investigation.
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FIG. 1 (color online). (a) A coupler consisting of six identical
sites. (b) The coupler integrated in a dual-channel system.
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FIG. 2 (color online). Time evolution of an excitation in the
QDC of Fig. 1(b), with N ¼ 7. The excitation is transferred from
the input port (s; 1) to the output port of the drain channel (d; N)
at t ¼ �. The time is in units of ��1.
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