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We present experimental evidence that the effective medium approximation (EMA), [D. C. Morse,

Phys. Rev. E 63, 031502 (2001)], provides the correct scaling law of the plateau modulus G0 / �4=3L�1=3
p

(with � the contour length per unit volume and Lp the persistence length) of semiflexible polymer

solutions, in the highly entangled regime. Competing theories, including a binary collision approximation

(BCA), instead predict G0 / �7=5L�1=5
p . We have tested both predictions using F-actin solutions which

permit experimental control of Lp independently of other parameters. A combination of video particle

tracking microrheology and dynamic light scattering yields independent measurements of G0 and Lp,

respectively. Thus we can distinguish between the two proposed laws, in contrast to previous experimental

studies focused on the (less discriminating) concentration dependence.
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Despite their importance to soft-matter physics, biology,
and industrial processing, the viscoelastic properties of
semiflexible polymer solutions are still not well understood
and a basic analytical model has not yet been agreed upon.
All current models describing the viscoelastic properties of
semiflexible polymer solutions are elaborations on the
early models of Doi and Edwards [1,2]. They developed
two full theories of the entangled state for two extreme
cases: completely flexible [1] and rigid-rod [2] polymers.
Solutions of semiflexible polymers, that lie between those
extremes, have many regimes of viscoelastic behavior
(requiring many theoretical models [3–12]), depending
on the polymers’ degree of rigidity (described in terms of
persistence length Lp), on their contour length L, and on

the concentration (from dilute to highly entangled re-
gimes). We shall focus on highly entangled isotropic solu-
tions of semiflexible polymers, with L=Lp � 1. In parti-

cular, we study the range of concentration (�0:1–1 mg=ml
in this case) where the geometrical mesh size Lm is much
less than Lp, and the tube diameter and entanglement

length are also expected to be much less than Lp. This

range of concentration was defined by Morse [3] as the
tightly entangled regime, and is particularly relevant to
many biological and industrial polymeric fluids. In order
to describe the viscoelastic behavior of the polymer net-
work in this range of concentrations, Morse developed two
analytical approximations describing the confinement
forces acting on a randomly chosen test chain embedded
in a ‘‘thicket’’ of uncrossable chains: the binary collision
approximation (BCA) and effective-medium approxima-
tion (EMA). In fact, the scaling relation resulting from the
BCA had previously been obtained by several others au-
thors [8–11], but Morse has also estimated the prefactors.
So, prior to the introduction of the EMA, there was broad
agreement regarding the scaling law. The approximations
are summarized as follows.

(i) The binary collision approximation gives a rather
detailed description of the interaction of a test chain with
individual nearby medium chains, but neglects any effects
arising from the collective elastic relaxation of the net-
work. It yields the following expression for the elastic
modulus:

G � 0:40kBT�
7=5L�1=5

p : (1)

(ii) The effective-medium approximation starts from a
very different point of view, by treating the network sur-
rounding the test chain as an elastic continuumwith a shear
modulus equal to the self-consistently determined plateau
modulus of the solution, and the test chain as a thread
embedded in this medium. The expression thus obtained is

G � 0:82kBT�
4=3L�1=3

p : (2)

Comparison of the above scaling predictions raises the
question of which theoretical approach (if either) better
describes the viscoelastic behavior of semiflexible polymer
solutions in the tightly entangled concentration regime.
Existing experimental measurements of the concentration
dependence of the plateau modulus [3,13], are not suffi-
cient to answer that question, because the two putative
values of the exponents are numerically quite close (G /
�1:4 vs G / �1:3�3), so that they both fit the experimental
data with reasonable accuracy [3].
To test the scaling predictions, we experimentally ana-

lyzed solutions of actin filaments (F-actin), a semiflexible
polymer derived from muscle tissue. As we shall show,
F-actin has the useful property that its persistence length
can be controlled by varying only the ionic properties of its
solvent, without altering other system parameters such as
solvent viscosity, polymer concentration or molecular
weight, thus allowing us to discriminate between the
EMA and BCA models. Hence, this is a rare example of
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biology helping to answer questions of interest to physics,
rather than vice versa.

At low ionic strength in vitro, actin exists in the mono-
meric (globular) G-actin form. G-actin is roughly spherical
with a diameter of about 5 nm.When the ionic strength of a
G-actin solution is increased to a physiological value
(0:1M), G-actin self-associates, to form F-actin, which is
characterized by a persistence length of 2–20 �m (depend-
ing on the buffer used) [14,15] and a diameter of approxi-
mately 8 nm [10,14]. In order to produce actin filaments
with different mechanical properties (Lp), two sets of

F-actin solutions (named System 1 and 2) were prepared
using two different buffer recipes, which will be referred to
hereafter as F buffer 1 and F buffer 2. In both the cases, the
initial solutions of G-actin were prepared with the same
buffer recipe (G buffer). Polymerization was initialized by
increasing the ionic strength of the G buffer to that of the F
buffers. The buffer recipes are as follows: G buffer:
0:2 mM ATP, 0:2 mM CaCl2, 2 mM Tris-HCl, 0:5 mM
DTT, pH 8.0. F buffer 1: 50 mM KCl, 2:0 mM free MgCl2,
5 mM Tris-HCl, 1 mM ATP buffer pH 7.5. F buffer 2:
25 mM KCl, 1:0 mM free MgCl2, 1:0 mM EGTA,
10 mM MOPS buffer pH 7.0.

In order to obtain independent measurements of the
complex modulus G� and of Lp, the two sets of F-actin

solutions were each investigated by two different tech-
niques: passive video particle tracking microrheology
(PVPTM) and dynamic light scattering (DLS).

The first technique, PVPTM, exploits the relationship
between the viscoelastic properties of a fluid under inves-
tigation, and the mean-square displacement (MSD) of
probe particles (of radius a), suspended in the fluid and
executing Brownian motion (Fig. 1). This relationship is
given by the Generalized Stokes-Einstein relation,

~GðsÞ ¼ kBT=�ash�~r2ðsÞi; (3)

where h�~r2ðsÞi and ~GðsÞ are the Laplace transforms of,
respectively, the mean-square displacement and the time
derivative of the shear modulus. Moving from Laplace

space to Fourier space is accomplished by substituting
the Laplace frequency s with i!, so that the real and

imaginary parts of ~Gði!Þ correspond to the storage and
loss moduli, G0ð!Þ and G00ð!Þ respectively, with ! the
Fourier frequency (Fig. 2). As probe particles, we used
carboxylate-coated polystyrene beads of diameter
0:489 �m. It is well known that microrheology can fail
to emulate macroscopic results if the probe particle’s size
and surface chemistry are incorrectly chosen. Micro-
rheological measurements of viscoelastic moduli are often
found to match the scaling laws found by macroscopic
rheology, while disagreeing by a constant factor in absolute
magnitude. In the present case, we only require reliable
measurements of scaling exponents, not of absolute values.
Nevertheless, Fig. 3 demonstrates that the absolute values
of our measurements are at least as accurate as macro-
scopic rheometric data in the literature, so that we can be
confident of their validity.
In all our PVPTM measurements, we found very good

agreement with Morse’s scaling predictions, for both
G0ð!; cÞ and G00ð!; cÞ as functions of frequency and con-
centration. Figure 3 shows the plateau modulus G0 [deter-
mined as the value of the storage modulus G0ð!Þ at the
frequency for which the ratio G00ð!Þ=G0ð!Þ is minimum]
versus F-actin concentration, for systems 1 and 2 in the
tightly entangled regime (�0:1–2 mg=ml). It is clear from
the figure that, as previously found [3], the concentration
dependence of G0 is not able to discriminate between the
two predictions (EMA and BCA). However, using the
microrheology data, the two theories yield very different
predictions for the ratio of persistence lengths in the two
systems:

BCA ) Lp1=Lp2 ¼ ðG0
2=G

0
1Þ5 ¼ 18� 3; (4)

EMA ) Lp1=Lp2 ¼ ðG0
2=G

0
1Þ3 ¼ 6:2� 0:7: (5)

Hence, we can distinguish between the two models by
measuring the actual persistence lengths. For that purpose,

FIG. 1 (color online). Mean-square displacement (MSD) ver-
sus lag time, for 0:489 �m-diameter beads in F-actin solutions at
different concentrations (mg/ml) (system 2). The solid line
represents the MSD of the beads suspended in water at 25 �C.

FIG. 2 (color online). Storage and loss moduli versus fre-
quency, for F-actin solution at a concentration 1 mg=ml (system
2). The lines are guides for the eye. The same features are also
exhibited by system 1.
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DLS measurements were performed on some of the
samples.

Kroy and Frey [16] provide a simple analytical expres-
sion for the time-dependent decay of the dynamic structure

factor gð1Þðq; tÞ of semiflexible polymers in semidilute
solution, where q ¼ ½ð4�nÞ=�0� sinð�=2Þ is the magnitude
of the scattering wave-vector, defined as the difference
between the incident and scattered wave vectors, n is the
refractive index of the solvent, �0 is the wavelength of the
laser in vacuo, and � is the scattering angle. They showed

that, at sufficiently long times (t � ðqLpÞ�4=3��1
q ), the

dynamic structure factor reduces to a simple stretched
exponential,

gð1Þðq; tÞ ¼ gð1Þðq; 0Þ exp½��ð1=4Þð�qtÞ3=4=3��; (6)

where �ð1=4Þ ¼ 3:625 61 and decay rate �q given by

�q ¼ kBTq
8=3½5=6� lnðqahÞ�=4��sL

1=3
p ; (7)

where �s is the solvent viscosity. They also calculated the
form of the dynamic structure factor in the limit t ! 0,
which can be used to measure the microscopic hydrody-
namic lateral diameter ah of the polymer chain

gð1Þðq; tÞ ¼ gð1Þðq; 0Þ expð��0tÞ (8)

with initial decay rate

�0 ¼ kBTq
3½5=6� lnðqahÞ�=6��s: (9)

The validity of Eqs. (6)–(8) requires [16] the conditions
ah 	 q�1 	 Lp � L and q�1 	 Lm, all of which are

satisfied by all of our samples, since ah � 9 nm, q�1 �
125–33 nm (where only the high-q data will be used in the
final result), while Lp and L are of order of microns and

Lm � 0:51–0:16 �m [11]. It is clear from Fig. 4 that Kroy
and Frey’s calculations [16] are applicable to our experi-
mental system, despite the scatter of data at early times.

Indeed, gð1Þðq; tÞ decays initially as a simple exponential
(identified by the line with unit slope in Fig. 4) and exhibits
stretched exponential behavior at longer times (line with
slope 3=4).
The hydrodynamic diameter ah was obtained from the

data by evaluating the initial decay rate, �0, via a linear fit
to the logarithm of the normalized dynamic structure fac-

FIG. 4 (color online). Double logarithm of the normalized
dynamic structure factor gð1Þðq; tÞ=gð1Þðq; 0Þ versus logarithm
of time, at a scattering angle of 90�, for a solution at F-actin
concentration c ¼ 0:4 mg=ml (system-1). Similar data are ob-
tained for system 2. The lines are guides for the eye.

FIG. 3 (color online). Plateau modulus G0 versus F-actin con-
centration, for Systems 1 (circle) and 2 (square). The open
triangles are bulk rheology results taken from Ref. [13]. The
short dashed and dash-dotted lines are linear fits to the data on
the log-log plots (power laws); the dotted and dashed lines show
the BCA (G0 / c7=5) and EMA (G0 / c4=3) scaling predictions,
respectively. The inset (system 2) shows the actual existence of a
different power-law regime at concentrations lower than the
tightly entangled regime (cf. Ref. [18]).

FIG. 5 (color online). Normalized initial decay rate �0 versus
scattering wave-vector q, and the best fit of Eq. (9) using ah as a
free parameter, for a solution at F-actin concentration c ¼
0:1 mg=ml (system-2). Inset: Diameter distribution from TEM
image analysis.

PRL 101, 198301 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

7 NOVEMBER 2008

198301-3



tor, in a time window between 10�7 s and 4
 10�5 s.
From Eq. (9) the nondimensionalized initial decay rate,
�0 ¼ 6��s�

0=ðkBTq3Þ, was then fitted by [5=6� lnðqahÞ]
(Fig. 5) to obtain ah. For all the F-actin solutions inves-
tigated (as with other large polymers [17]), we found very
good agreement between the indirect measurement of the
lateral hydrodynamic diameter (averaged value ah ¼ 9�
3 nm) and that measured directly by transmission electron
microscopy (TEM) image analysis (ah ¼ 9:2� 0:1 nm;
see Fig. 5 inset).

With the hydrodynamic diameter now determined, it can
be used in Eqs. (6) and (7) to estimate the persistence
length Lp. We adopt an average value ah ¼ 9:2 nm for

both systems. Equations (6) and (7) were fitted to the
measured time dependence of the dynamic structure factor,
for various scattering vectors q, with Lp as the only fitting

parameter. The results for system 1 are shown in Fig. 6.
One might expect the result to be independent of q but, as
noted in Ref. [16], the equations apply only to scattering
vectors large enough to resolve single filaments. For scat-
tering vectors smaller than the inverse mesh size Lm, the
structure factor is averaged over several filaments and Eqs.
(6) and (7) no longer hold. It is therefore the large-q
asymptote that marks the true persistence length in
Fig. 6. We thus consider only averaged values of Lp for

q � 22 �m�1, as reported for the two systems in Table I,
where three independent measurement of the ratio of per-
sistence lengths are all in agreement.

In conclusion, the true ratio of persistence lengths in the
two systems is consistent with the value predicted by
Morse’s EMA approximation [Eq. (2)] [3], but is more
than 4 standard deviations away from that predicted by
the more established BCA scaling law [Eq. (1)]. We have
thus resolved the controversy, and established that the
effective-medium approximation more accurately models
the tightly entangled regime of semiflexible polymer solu-
tions. The strength of this result rests on the clear agree-
ment between two completely independent experimental
techniques.
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FIG. 6. Persistence length Lp versus wave vector q for a
solution at F-actin concentration c ¼ 0:2 mg=ml (system-1)
(derived using ah ¼ 9:2 nm).

TABLE I. Persistence lengths in systems 1 and 2. We also
found a weak concentration dependence of Lp / c1=3�0:04 for

both systems. This functionality is consistent with the definition
of Lp, which is expected to grow from Lp ¼ �=kBT, in dilute

solution (where � is the bending modulus), up to Lp � 1, in the

nematic phase.

Actin concentration

(mg/ml)

Lp1

(�m)

Lp2

(�m)

Lp1=Lp2

0.1 10� 1 1:88� 0:05 5:3� 0:6
0.2 12:2� 0:8 2:24� 0:15 5:4� 0:5
0.4 18� 2 3:16� 0:09 5:7� 0:7
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