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We study the dynamical properties of active polar liquid crystalline films. Like active nematic films,

active polar films undergo a dynamical transition to spontaneously flowing steady states. Spontaneous

flow in polar fluids is, however, always accompanied by strong concentration inhomogeneities or

‘‘banding’’ not seen in nematics. In addition, a spectacular property unique to polar active films is their

ability to generate spontaneously oscillating and banded flows even at low activity. The oscillatory flows

become increasingly complicated for strong polarity.
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Active materials are a new class of soft materials main-
tained out of equilibrium by internal energy sources. There
are many examples in biological contexts, including bac-
terial colonies [1], purified extracts of cytoskeletal fila-
ments and motor proteins [2], and the cell cytoskeleton
[3]. A nonbiological example is a layer of vibrated granular
rods [4]. The key property that distinguishes active matter
from more familiar nonequilibrium systems, such as a fluid
under shear, is that the energy input that maintains the
system out of equilibrium comes from each constituent,
rather than the boundaries. Each active particle consumes
and dissipates energy going through a cycle that fuels
internal changes, generally leading to motion. The experi-
mental systems studied to date typically consists of elon-
gated active particles of two types: polar particles, with a
head and a tail, and apolar ones that are head-tail symmet-
ric. Active suspensions can then exist in various liquid
crystalline states, with novel structural and rheological
properties [5,6]. Apolar particles can form phases with
nematic order, characterized by a macroscopic axis of
mean orientation identified by a unit vector n and global
symmetry for n ! �n, as in equilibrium nematic liquid
crystals. Polar particles can order in both nematic and polar
phases. The polar phase is again characterized by a mean
orientation axis p, but p � �p. The protein filaments
which are the major component of cell extracts are gen-
erally polar and these extracts can therefore have both
nematic and polar phases.

Conventional liquid crystals exhibit a rich nonequilib-
rium behavior when subject to external forcing, such as
shear or applied magnetic and electric fields. This includes
transitions to stable statically distorted deformations of the
director field (Fréedericksz transition [7]), shear banding
[8], and even the onset of turbulent and chaotic behavior in
the presence of shear [9]. Active liquid crystals exhibit a
similar wealth of phenomena due to internal forcing, i.e.,
spontaneously. A striking property of active nematic liquid
crystal films is the onset of spontaneous flow above a
critical film thickness first identified by Voituriez et al.
[10]. This phenomenon is analogous to the Fréedericksz

transition of a passive nematic in an applied magnetic field,
but the flowing state is driven by the internal activity of the
system—hence the name. This prediction was obtained by
analytical studies of the phenomenological hydrodynamic
equations of an active nematic film in a one-dimensional
geometry. More recently, Marenduzzo et al. [11] have
employed hybrid lattice-Boltzmann simulations to study
the active nematic hydrodynamics in both 1D and 2D
geometry and have mapped out the phenomenon in pa-
rameter space.
In this Letter we show that active polar fluids exhibit an

even richer behavior. First, like active nematics, polarized
active liquid crystals exhibit steady spontaneous flow.
Unlike active nematics, however, where the filament con-
centration remains practically uniform in the spontane-
ously flowing state, spontaneous flow in polar fluids is
accompanied by ‘‘concentration banding.’’ This is a sharp
gradient in the filament concentration across the film due to
polar active ‘‘transport’’ of polarization that compensates
diffusion. Upon increasing the magnitude of these intrinsi-
cally polar terms, the steady state becomes unstable and the
system undergoes a further transition to a dynamic state
with bands of oscillating concentration and orientation. In
the oscillatory regime, travelling bands nucleate and oscil-
late from one end of the film to the other. For even larger
couplings the oscillatory behavior becomes increasingly
complex with the appearance of multiple frequencies with
incommensurate ratios between the periods of the orienta-
tional and concentration oscillations. Although density
patterns and oscillations can arise in active nematics
from contractile stresses that soften the elastic constants
and build up density inhomogeneities [12], the effects
described here are physically distinct and unique to active
polar fluids. Their origin lies solely in active terms describ-
ing the effective motion of self-propelled polar units in the
solvent.
Hydrodynamic equations for a two-component active

suspension have been written down phenomenologically
[13] and derived from a microscopic model [14]. The
relevant hydrodynamic variables are the concentration c
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of filaments and the total density � and momentum density
g ¼ �v of the suspension, with v the flow velocity. We
consider an incompressible film, with � ¼ const and r �
v ¼ 0, and macroscopic dimensionless polarity P ¼ jPjp,
with direction characterized by a unit vector p ¼
ðcos�; sin�Þ, the polar director.

The hydrodynamic equations for two-component polar
suspensions have been derived elsewhere by coarse grain-
ing a microscopic model of the dynamics of interacting
motors and filaments [14]. The active suspension is an
intrinsically nonequilibrium system and cannot be de-
scribed by a free energy. However, for clarity of presenta-
tion we introduce here the equations phenomenologically
and write all equilibriumlike terms (i.e., those terms that
are also present in an equilibrium polar suspension) in
terms of derivatives of a nonequilibrium analogue of a
free energy, given by [15]

F ¼
Z
r

�
C

2

�
�c

c0

�
2 þ a2

2
jPj2 þ a4

4
jPj4 þ K1

2
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2
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�c
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3c0
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�
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withC the compressional modulus andK1 andK3 the splay
and bend elastic constants, both taken equal to K below.
The last three terms on the right hand side of Eq. (1) couple
concentration and splay and are present in equilibrium
polar suspensions (B1 ¼ B2 ¼ B3 ¼ B below). The dy-
namics of the concentration and of the polar director is
described by
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�
�F

�c

��
; (2a)
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�
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�c

�
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where ‘ is the length of the filaments, uij ¼ 1
2 ð@ivj þ @jviÞ

and !ij ¼ 1
2 ð@ivj � @jviÞ are the rate-of-strain and vortic-

ity tensors, and h ¼ ��F=�P the molecular field. Here �,
�0 and �00 are kinetic coefficients and � and �0 are active
parameters. The equation describing momentum conserva-
tion is written in the Stokes approximation as @j�ij ¼ 0.

The stress tensor �ij is the sum of reversible, dissipative

and active contributions, �ij ¼ �r
ij þ �d

ij þ �a
ij. The re-

versible part is written in an equilibriumlike form,

�r
ij ¼ ��ij�

r � �

2
½Pihj þ Pjhi� þ 1

2
½Pihj � Pjhi�;

with �r the reversible part of the pressure and � the
alignment parameter. The dissipative part of the stress
tensor is written as �d

ij ¼ �uij assuming a single viscosity

�. Finally, there are additional stresses induced by activity
given by

�a
ij ¼

c2‘2

�
½��ij�

a þ �PiPj þ ‘2�00ð@iPj þ @jPiÞ�:

with �a the active part of the pressure. There are two
contributions to the active stress tensor. The first (��) de-
scribes active stresses that arise from contractile (if �> 0
[16]) forces induced by activity. This term is present in
both nematic and polar liquid crystals and its effects have
been studied before. The second term (��00) arises from
‘‘self-propulsion’’ of the active units and is exclusive to
polar systems. The same mechanism is also responsible for
the ‘‘convective’’ terms proportional to � and �0 in
Eqs. (2a) and (2b). The quadratic dependence on the con-
centration c is due the pair-interaction between filaments
induced by the motors in our microscopic model [17]. For a
motor-filament mixture, all active contributions are pro-
portional to the mean rate �	 of adenosine triphosphate
(ATP) consumption, which is the internal driving force for
the system. �-type terms have dimensions of velocity and
have been estimated in the microscopic model as�� ~mu0,
with ~m a dimensionless concentration of motor clusters and
u0 ��	 the mean velocity at which motor clusters step
along the filaments [17]. Previous work on confined active
films [10,11] has been limited to active nematics with all
the � terms equal to zero. Here for the first time we
incorporate the polar active terms and analyze their role
in controlling nonequilibrium effects in active films.
Hereafter we will assume �0 ¼ �00 ¼ �.
We consider a two-dimensional active polar suspension

with polarization of uniform magnitude and discuss the
dynamics of the hydrodynamic fields c, v and p. For
simplicity we set jPj ¼ 1. The film sits on a solid plane
at y ¼ 0 and is bound by a free surface at y ¼ L [Fig. 1(a)].
The discussion below is easily extended to other boundary
conditions. The film extends to infinity in the x direction
and we assume translational invariance along x. The Stokes

FIG. 1 (color online). (a) Sketch of the film geometry. (b–
d) Solutions of Eqs. (3a) and (3b) for � ¼ 0:1, 
 ¼ 0:3, D ¼ 1,
~C ¼ 0:5, �� ¼ 0:5, w ¼ 0:13, ~� ¼ 0:08 and variable ~�.
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equation requires @y�yy ¼ 0 and @y�xy ¼ 0. The first of

these two conditions fixes the pressure in the film. The
second, together with the boundary condition �xyðLÞ ¼ 0,

requires �xy ¼ const ¼ 0 throughout the film. We also

assume no-slip boundary conditions at the substrate, so
that vxð0Þ ¼ 0.

It is convenient to work with dimensionless quantities by
introducing the time scale �0 ¼ ‘2=ð�KÞ. Letting z ¼ y=‘,
� ¼ t=�0, � ¼ c=c0 and specializing Eqs. (2a) and (2b) to
our quasi-one-dimensional geometry, we obtain

�@��¼@zf ~��2 sin�þ�~usin�sin2�

þ½Dð1�
sin2�Þ�wcos2��@z�g; (3a)

@��¼ð1�wcos2�Þ@2z�þ1

2
wsin2�ð@z�Þ2�� ~�sin�@z�

þwcos�@z�� ~uð1��cos2�Þ; (3b)

where ~� ¼ �c0‘�0, w ¼ 2‘B=K, 
 ¼ �02=ð��00Þ, and
D ¼ �00C=ðc20�KÞ. The dimensionless rate-of-strain ~u ¼
2uxy�0 can be obtained from the condition �xy ¼ 0,

~u ¼ � 1

2��þ �2sin22�
f�w sin2�sin2�ð@z�Þ2

þ ½wð1� � cos2�Þ � 2� ~Csin2�� cos�@z�
� 2 ~�c0‘

2�2 sin�@z�þ ~��2 sin2�g; (4)

where ~� ¼ �c20‘
4=ð�KÞ and ~C ¼ ‘�0C=ð�KÞ2. The terms

proportional to w are also present in passive polar fluids as
they arise from the fact that the polar symmetry allows the
coupling proportional to B between splay and density

fluctuations. The terms proportional to ~� are intrinsically
nonequilibrium polar terms. Finally, the case of an incom-
pressible one-component nematic fluid, investigated by
Voituriez et al. [10] and by Marenduzzo et al. [11], can

be recovered from our equations by setting ~� ¼ w ¼ 0 and
assuming a constant concentration �.

Equations (3a) and (3b) are integrated numerically with
boundary conditions �ð0; �Þ ¼ �ðL=‘; �Þ ¼ 0, @z�ð0; �Þ ¼
@z�ðL=‘; �Þ ¼ 0 (i.e., jyð0; tÞ ¼ jyðL; tÞ ¼ 0). The initial

conditions on � and � are chosen as random, with the
constraint h�ðz; 0Þi ¼ 0 and h�ðz; 0Þi ¼ 1 where h� � �i
stands for a spatial average.

Steady spontaneous flow.—Both the polar and the apolar
systems exhibit a Fréedericksz-like transition between a
state where the director field is constant and parallel to the
walls throughout the channel to a nonuniformly oriented
state in which the system spontaneously flows in the x
direction. The transition can be tuned by changing either
the film thickness or the activity parameter ~�. Figure 1
shows a numerical solution of Eqs. (3a) and (3b) for fixed

~� and variable ~�, with L=‘ ¼ 10. As the active velocity ~�
is increased, the maximum tilt �m decreases and the align-
ment is progressively restored. Remarkably the variation in
the concentration� across the film is significantly stronger
than in the apolar case (solid green curve in Fig. 1) with a

relative difference between the highest and the lowest
values up to 50%. This concentration banding is a charac-
teristic of polar active systems. It is a consequence of the
active �0 coupling in Eq. (2a) resulting from self-propelled
convection of the active elements along the local polariza-
tion direction. The varying local polarization angle re-
quired for spontaneous flow therefore leads to an even
stronger variation in the local concentration. Close to the

transition, ~�cð ~�Þ, the coupling between the polar director
and concentration also leads to an asymmetric director
profile across the film.We also point out that in the absence
of this polar active term, there are equilibriumlike gradient
couplings between local director and density. These are,
however, much weaker since they occur at higher order in
gradients. In contrast, the active nematic shows a negli-
gible concentration gradient even for anomalously large

values of the contractile activity parameter, ~� � ~�cð ~�Þ.
Spontaneous oscillations.—Upon further increasing ~�,

spontaneous oscillations of �ðz; �Þ and �ðz; �Þ are ob-
tained. The coupled dynamics of the two fields gives rise
to travelling waves of concentration and orientation bands.
Initially only one frequency is observed, but the oscilla-

tions become more complicated as ~� increases. Using
Fourier decomposition we find that this is due to the
appearance of additional frequencies at different values

of ~� for concentration and orientation bands (see Fig. 2).

A phase diagram in the (~�, ~�) plane is displayed in Fig. 3.
It shows transitions between stationary (S) flow, sponta-
neous steady flow (SF) and spontaneous periodic (oscilla-
tory) flow (PF).
We can understand the phase behavior close to a sta-

tionary homogeneous state (� ¼ �0, � ¼ 0, ~u ¼ 0) by
expanding �ðzÞ ¼ ��þðzÞei!t þ ���ðzÞe�i!t and �ðzÞ ¼
�0 þ ��þðzÞei!t þ ���ðzÞe�i!t. The boundary condi-

FIG. 2 (color online). On the left, discrete Fourier transforms
of �ðz‘ ¼ L=2; �Þ (center of the film) for � ¼ 0:1, 
 ¼ 0:3, D ¼
1, ~C ¼ 0:3, �� ¼ 0:5, w ¼ 0:13, ~� ¼ 0:1 and ~� ¼ 15 (a) 18 (b)
and 20 (c). On the right, space-time plots of �ðz; �Þ.
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tions require��ðzÞ ¼ P1
n¼1 a

�
n cosðn‘z=LÞ and ��ðzÞ ¼P1

n¼1 b
�
n sinðn‘z=LÞ. The first unstable modes are a�1 , b

�
1

and a linear stability analysis shows that there is a steady-
state (! ¼ 0) instability at

~� cð ~�Þ ¼ ��ð1� wÞ
1� �

�
‘

�0L

�
2 þ w ~�½��þ 1

2 ð1� �Þ2�
ð1� �ÞðD� wÞ ;

(5)

to a steady spontaneously flowing state with concentration

banding. Oscillatory modes with frequency !c �
�0ð‘=LÞðw ~�Þ1=2 appear beyond a ‘‘tricritical point’’ (TP)

~�TP ¼ ��ð=�0Þ2ð‘=LÞ2ðDþ 1� 2wÞ
1� �

;

~�TP ¼ ð=�0Þ2ð‘=LÞ2ðD� wÞ2
w½1þ ð2��Þ�1ð1� �Þ2� :

This linearized analysis predicts the positions of the
‘‘phase boundaries’’ S-SF and S-PF in quantitative agree-
ment with the numerical solution. The boundary SF-PF has
been obtained only numerically. The appearance of spon-
taneous oscillations results from the coupled motion of
concentration and director orientation bands due to both
the convective active polar coupling (�) and the passive
polar coupling (w) of director and concentration. Upon

increasing ~� the oscillatory behavior becomes increasingly
complex, but we have not been able to observe fully

fledged chaos for reasonable values of ~�.
We have studied the dynamical properties of thin films

of active polar fluids and found a rich variety of complex
behaviors which should be observable experimentally in
polar active systems. Using microscopic models of motor-
filament coupling, it was estimated in [17] that � � � in
microtubules-kynesin mixtures, while � � � in actomyo-
sin systems. This suggests that in vitro microtubules-
kynesin mixtures may be the best candidate for the obser-
vation of the oscillating bands predicted here. It should,

however, be noted that filament treadmilling also leads to
terms with polar symmetry at the continuum level, where
in this case � would be proportional to the polymerization
rate. The intriguing possibility that our findings may be
relevant to treadmilling actomyosin systems and therefore
have implications for lamellipodium dynamics will be ex-
plored elsewhere.
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FIG. 3 (color online). Phase diagram in the (~�, ~�) plane. The
points have been obtained numerically using � ¼ 0:1, 
 ¼ 0:3,
D ¼ 1, ~C ¼ 0:3, �� ¼ 0:5, w ¼ 0:13 and L=‘ ¼ 10. For ~�<
~�TP upon increasing ~� the system undergoes a transition be-
tween stationary homogeneous state (S) and inhomogeneous
steady flow (SF). Above the ‘‘tricritical point’’ (TP) the sponta-
neous flow becomes oscillatory (PF).
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