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We performMonte Carlo simulations of Ising spin-glass models in three and four dimensions, as well as

of Migdal-Kadanoff spin glasses on a hierarchical lattice. Our results show strong evidence for universal

scaling in the spin-glass phase in all three models. Not only does this allow for a clean way to compare

results obtained from different coupling distributions, it also suggests that a so far elusive renormalization

group approach within the spin-glass phase may actually be feasible.
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The characterization of the spin-glass phase in finite
space dimensions remains as one of the prominent unre-
solved problems in the physics of disordered systems.
Although the spectrum of theories that have been proposed
to describe spin glasses is broad [1–9], the main theoretical
pictures are the simple scaling approach (droplet picture)
[2,3] and the replica symmetry breaking (RSB) scenario
inspired by mean-field theory [1]. Because frustration and
disorder are inherent ingredients of spin glasses, progress
via field-theoretical calculations has been difficult, at least
below six dimensions [10]. Thus most of the progress in the
field relies on numerical studies that are also strongly
limited mainly due to the numerical complexity of spin
glasses. In fact, the difficulties are such that there is no
good numerical evidence of whether a renormalization
group (RG) approach may work in the spin-glass phase.

We address some of the necessary features that one
should observe in the spin-glass phase such that scaling
theory and an RG approach may be potentially successful.
To check for the applicability of a scaling theory within the
spin-glass phase we assume a priori that a scaling approach
works and check a posteriori whether our results are con-
sistent with the scaling assumptions made. For this purpose
we study finite-size scaling functions where we compare
the behavior of several observables on a change of scale:
We rescale the system size and plot observables as a
function of a phenomenological coupling which in our
case is the Binder cumulant [11]. We find that this proce-
dure leads to scaling functions consistent with a universal
scaling behavior in the spin-glass phase for all models
studied: the Migdal-Kadanoff (MK) spin glass on a
(three-dimensional) hierarchical lattice [12], as well as
the 3D and the 4D Edwards-Anderson (EA) short-range
Ising spin glasses [13]. Of particular interest is the scaling
function of the Binder cumulant itself since it provides a
compact way to look at the complete RG flow.

The MK spin glass serves as an example to illustrate the
behavior of the different finite-size scaling functions in a
simple scaling theory. This, in turn, follows from the
possibility to exactly solve the model (numerically) using
an RG decimation transformation.

The physically interesting case of the 3D EA model is
also the most difficult as the lower critical dimension is
close [14], which means that the spin-glass phase in this
case is rather marginal. Thus we also study the model in
4D. We observe similarities as well as clear differences
between the MK and EA models. In particular, for all
studied models we find clear evidence for the emergence
of a universal scaling behavior in the spin-glass phase in
the thermodynamic limit. Although our findings might be
taken as a hint for the correctness of a simple scaling
approach for the EA model, it is fair to observe that for
very low temperatures we find an effective stiffness ex-
ponent � which is compatible with zero, as expected in the
RSB or TNT [7,8] scenarios. Furthermore, for the system
sizes studied, the fractal dimension of the surface of the
low-energy excitations seems not to be equal to the space
dimension d, in agreement with the TNTor droplet scenar-
ios. We therefore lay the foundation for a simple approach
that should allow future studies to check whether the
disagreement with the traditional pictures is due to scaling
corrections, or whether new theoretical descriptions are
needed.
Finite-size scaling approach.—For any observable

OðL; TÞ as a function of the temperature T and the system
size L, and the finite-size correlation length �ðL; TÞ finite-
size scaling (FSS) theory predicts [15] that

O ðsL; TÞ=OðL; TÞ ¼ FO½�ðL; TÞ=L; s� þ ðcorrectionsÞ;
where s is a scaling factor. The corrections vanish in the
thermodynamic limit. Because even the correlation length
divided by the system size diverges in the spin-glass phase,
this definition is inconvenient to examine the behavior of
FSS functions within the spin-glass phase. Hence we use
an alternative phenomenological coupling as the scaling
variable which allows for a better visualization of the
scaling functions in the spin-glass phase. We find that the
Binder cumulant gðL; TÞ [see Eq. (2) below] works best
since it is bounded in the interval [0,1], thus leading to a
compact picture of the scaling properties in the whole spin-
glass phase. In the following we study different FSS func-
tions
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O ðsL; TÞ=OðL; TÞ ¼ FO½gðL; TÞ; s� þ ðcorrectionsÞ (1)

defined as a function of gðL; TÞ. Next, we verify numeri-
cally whether it is sensible to study such FSS functions in
the spin-glass phase and discuss our findings.

Models and observables.—We consider the spin-glass
Hamiltonian H ¼ �P

i;jJij�i�j, where the sum is over

all nearest neighbor pairs on the lattice and �i 2 f�1g are
Ising spins. The couplings Jij are drawn from either a

Gaussian (G), bimodal (B), link-diluted bimodal (D), or
irrational (I) distribution which corresponds to a bimodal
distribution where half of the (randomly chosen) bonds are

multiplied by an irrational constant cI ¼ ð1þ ffiffiffi
5

p Þ=2. The
Hamiltonian is studied both on a hierarchical lattice with
an effective space dimension of three and on a simple
hypercubic lattice in three and four space dimensions.
We use periodic boundary conditions for the EA model
on the hypercubic lattices and free boundary conditions for
the hierarchical lattice [16]. The space dimension of the
hierarchical lattice with G generations is d ¼ 1þ
lnðbÞ= lnðsÞ, where b is the number of parallel branches
and s is the number of bonds in series (we set s ¼ 2 and
b ¼ 4 to obtain an effective space dimension of 3). The
size of the system is L ¼ sG.

The spin-glass order parameter is given by q ¼
ð1=NÞPi�i�i, where� and � are two replicas of the system
with the same disorder. For the hierarchical lattice we use
[17] q ¼ 1=ð2NLÞ

P
hijið�i�i þ �j�jÞ where the sum runs

over all linksNL of the lattice. The spin-glass susceptibility
� is defined via �ðL; TÞ ¼ N½hq2i�av, where h�i represents a
thermal average and ½��av a disorder average. The Binder
cumulant g is defined as

gðL; TÞ ¼ 1

2

�

3� ½hq4i�av
½hq2i�2av

�

: (2)

Finally, we also study the link-overlap ql ¼
ð1=NLÞ

P
hiji�i�j�i�j, where the sum is over all links.

Within the TNT picture the fractal dimension ds of large-
scale excitations can be extracted from the variance of the
link overlap �2

qlðL; TÞ ¼ ½hq2l i � hqli2�av � L��l , where

�l ¼ �þ 2ðd� dsÞ varies with temperature [18]. The
stiffness exponent � follows from the temperature deriva-
tive of the finite-size scaling function of the Binder cumu-
lant F@Tg via the quotient method [19]:

s�� ¼ 1þ g�@gFgðg; sÞjg¼g� þ ðcorrectionsÞ; (3)

where g� is the value of the Binder cumulant at any given
strong-coupling fixed-point [20] and s is the scale factor
used in the definition of the scaling function. Note that
cumulants of the order parameter as well as the correlation
length �=L are RG invariant quantities often referred to as
‘‘phenomenological couplings.’’ In contrast to traditional
scaling analyses of the spin-glass phase which use bare
(unrenormalized) couplings (e.g., temperature), here we

use renormalized couplings (e.g., Binder ratio) as scaling
variables, thus presenting a cleaner analysis.
Computational details.—For the hierarchical lattice we

use a similar procedure to Ref. [21]. An alternative way to
calculate the link- and spin-overlaps on the hierarchical
lattice is given in Ref. [22]. For L � 16 (G � 4) we use
Nsa ¼ 5� 105 samples, for L ¼ 32 (G ¼ 5) at least 105

samples, for L ¼ 64 (G ¼ 6) at least 9� 104 samples and
for L ¼ 128 (G ¼ 7) at least 1:5� 104 samples. All data
are averaged over 103 independent configurations.
For the regular lattices the simulations are performed

using the exchange Monte Carlo method [23,24]. For
systems with Gaussian disorder we use the equilibration
test of Ref. [18], whereas for the link-diluted case we
perform a logarithmic binning of the data. Once the last
three bins agree within error bars the system is equili-
brated. For the 3D model with irrational [Gaussian] cou-
plings Tc ¼ 1:47ð3Þ [Tc ¼ 0:951ð9Þ]. For the 4D link-
diluted model with 35% dilution [26] [Gaussian disorder]
Tc ¼ 1:0385ð25Þ [Tc ¼ 1:805ð10Þ]. For details see Table I.

TABLE I. Parameters for the simulations of the 3D model with
Gaussian (3DG) and irrational (3DI) disorder, as well as the 4D
model with Gaussian (4DG) and bond-diluted (4DD) disorder. L
is the system size, Nsa is the number of disorder realizations, Nsw

is the number of equilibration and measurement sweeps, Tmin is
the lowest temperature and Nr the number temperatures used in
the exchange Monte Carlo method.

Model L Nsa Nsw Tmin Nr

3DG 4 109 212 1 048 576 0.20 22

5 100 303 1 048 576 0.20 22

6 101 643 1 048 576 0.20 22

8 40 430 8 388 608 0.20 22

10 10 687 3 3554 432 0.20 22

12 5134 3 3554 432 0.42 18

16 5003 8 388 608 0.50 17

3DI 4 160 000 256 000 0.30 17

5 160 000 256 000 0.30 17

6 160 000 512 000 0.30 17

8 160 000 1 024 000 0.30 17

10 23 712 4 096 000 0.30 26

12 12 768 4 096 000 0.70 22

4DG 3 20 000 131 072 1.40 29

100 000 16 384 0.39 20

4 20 000 131 072 1.40 29

5 20 000 131 072 1.40 29

6 20 000 131 072 1.40 29

10 025 4 194 304 0.39 20

8 3500 524 288 1.40 29

10 2000 524 288 1.40 29

4DD 3 11 392 100 000 0.50 11

102 400 20 000 0.95 11

4 107 680 40 000 0.95 11

5 101 699 40 000 0.95 11

6 3072 200 000 0.50 11

101 664 40 000 0.95 11

8 41 408 100 000 0.95 21

10 24 160 100 000 0.95 21
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Finite-size scaling functions.—We first address the scal-
ing function of the Binder cumulant Fg for all models
studied and then discuss further scaling functions. In
Fig. 1 we show our results for the FSS function Fg for
different models. Fg displays in a compact way the RG
flow of the Binder cumulant. Panels (a) and (b) show
results for the hierarchical model where the scaling ap-
proach is known to work. Panel (a) shows a comparison
between Gaussian and irrational coupling distributions,

whereas panel (b) shows how the FSS scaling function
for the bimodal coupling distribution—amidst strong
finite-size effects—converges (slowly) towards the FSS
function of the Gaussian (and irrational) cases. The con-
vergence is slowest close to g ¼ 1 (T ¼ 0) because for low
T entropic effects become relevant [27]. These results are a
clear indication for universal FSS in the spin-glass phase
for the MK model. Panel (c) shows a comparison of the
Gaussian and the irrational coupling distribution in the 3D
EA model. Finally, panel (d) shows a comparison between
the Gaussian and the link-diluted bimodal EAmodel in 4D.
The results for the 3D and 4D EA models are consistent
with the scaling hypothesis and indicate a universal scaling
behavior. The broken lines indicates how the FSS function
should depart from g ¼ 1 assuming that simple droplet
scaling is correct, i.e., that the slope is given by the
exponent � through Eq. (3). While this works perfectly
for the MK model, there is a clear difference in the case of
the EA model.
In order to show that the scaling collapse in Fig. 1 is not

coincidental we show in Fig. 2 the FSS function of the
spin-glass susceptibility. The top panel shows a compari-
son of Gaussian and irrational disorder for the MK model,
whereas the bottom panel shows a comparison for the 3D
EA model. Again, the data show strong evidence of a
universal scaling behavior. The data for the MK model
seem to fall onto a straight line which underlines the very
simple scaling behavior in this model.
In Fig. 3 we show results for the link-overlap variance.

The top panel shows data for the MK model with Gaussian
and irrational disorder distributions. In contrast to the other
FSS functions discussed so far we find sizable scaling cor-

FIG. 1 (color online). Comparison of the finite-size scaling
function of the Binder cumulant for different models.
(a) Gaussian (open or black symbols) and irrational (closed or
red symbols) disorder for the hierarchical lattice.
(b) Hierarchical lattice with bimodal disorder. The data converge
slowly to the Gaussian limiting case (solid curve). (c) 3D EA
model with Gaussian (open or black symbols) and irrational (full
or red symbols) disorder. (d) 4D EAmodel with both link-diluted
(closed or red symbols) and Gaussian (open or black symbols)
disorder. The dashed lines in all panels represent a droplet
scaling behavior with � ¼ 0:27 for the hierarchical, � ¼ 0:2
for the 3D and � ¼ 0:75 for the 4D models, respectively.

FIG. 2 (color online). Comparison of the finite-size scaling
function of the susceptibility � for the hierarchical lattice (top)
with the 3D EA model (bottom). In both models the results for
the Gaussian (open or black symbols) and the irrational (full or
red symbols) coupling distribution are shown.
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rections. The data are less conclusive but there is a clear
trend that the curves for the two different distributions
converge to a single master curve. The bottom panel shows
data for the aforementioned disorder distributions in the
3D EA model. The data are similar to the MK case and
show small corrections to scaling. The broken lines (or the
region between them) correspond(s) to the expected value
of the scaling function at g ¼ 1 in the thermodynamic limit
under droplet scaling assumptions (here we use � ¼
0:20ð5Þ and d� ds ¼ 0:42ð3Þ [8] in the 3D EA case;
� ¼ 0:27 and ds ¼ d� 1 ¼ 2 in the MK case). Neither
the droplet nor the RSB picture (where F�2

ql
! 1) extrapo-

late to a consistent value for F�2
ql
in the limit g ! gðL; T ¼

0Þ, in agreement with Refs. [7,8].
Summary and discussion.—Studying the behavior of

several FSS functions we have found evidence for a uni-
versal scaling behavior in the spin-glass phase. The exis-
tence of these universal FSS functions allows us to perform
for the first time a precise comparison of results in the spin-
glass phase between different coupling distributions. We
find that neither the simple droplet nor the RSB picture
extrapolate to consistent values for the scaling functions in
the zero-temperature limit. For both pictures it can be
argued that these inconsistencies might be due to scaling
corrections [28,29]. Our results suggest that in such a case
not only the scaling behavior in the thermodynamic limit is
universal, but also the leading scaling corrections.
Although our results do not allow us to discriminate be-
tween the different scenarios that have been proposed for

the nature of the spin-glass phase, they allow for a new,
parameter-free way of looking at the problem.
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FIG. 3 (color online). Comparison of the finite-size scaling
function of the link-overlap variance �2

ql for the hierarchical

model (top) and the 3D EA model (bottom). For both MK an EA
models the results for the Gaussian (open or black symbols) and
the irrational disorder (full or red symbols) are shown. The
broken line (the range between the broken lines, respectively)
correspond(s) to the expected value of the scaling function for
g ! 1 in the thermodynamic limit within the droplet model.
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