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Recent experiments indicate that Na4Ir3O8, a material in which s ¼ 1=2 Ir local moments live on a

three-dimensional ‘‘hyperkagome’’ lattice of corner-sharing triangles, may have a quantum spin liquid

ground state with gapless spin excitations. Using a combination of exact diagonalization, symmetry

analysis of fermionic mean field ground states and Gutzwiller projected variational wave functions

studies, we propose a quantum spin liquid with spinon Fermi surfaces as a favorable candidate for the

ground state of the Heisenberg model on this lattice. We point out implications of this proposal for

thermodynamic properties and discuss possible weak instabilities of the spinon Fermi surfaces.

DOI: 10.1103/PhysRevLett.101.197202 PACS numbers: 75.10.Jm

Introduction.—Na4Ir3O8 is a recently discovered three-
dimensional (3D) frustrated quantum magnet [1]. The Ir
atoms in this insulating compound have s ¼ 1=2 local
moments and form a 3D network of corner-sharing tri-
angles called a ‘‘hyperkagome’’ lattice [1], a cubic lattice
whose unit cell is shown in Fig. 1. High temperature
magnetic susceptibility (�) measurements in this material
suggest that the Ir moments have strong antiferromagnetic
correlations with a Curie-Weiss temperature �W �
�650 K. The observation of a large � and entropy at low
temperature indicates that gapless spinful excitations sur-
vive for T � �W . At the same time, � and specific heat
measurements reveal no signatures of magnetic order or
any other symmetry breaking down to T � 0:5 K, nearly
3 orders of magnitude lower than �W , suggesting that
Na4Ir3O8 may be the first example of a 3D quantum spin
liquid which does not order down to T ¼ 0. It joins a small
but growing list of recently discovered frustrated s ¼ 1=2
quantum magnets [2] which appear to have quantum dis-
ordered ground states.

These experiments motivated a study of the classical
Heisenberg antiferromagnet on the hyperkagome lattice
[3]. This model was found to order into a coplanar ‘‘clas-
sical nematic’’ state at low temperatures, T & J=1000,
where J is the nearest neighbor antiferromagnetic ex-
change coupling. However, quantum effects are clearly
significant at such low temperatures. A subsequent study
of the quantum Heisenberg model, using an SpðNÞ mean
field theory, uncovered a candidate quantum spin liquid
ground state with Z2 topological order [4]. However, this
‘‘bosonic’’ spin liquid has a nonzero spin gap which is at
odds with recent observations, that gapless spin excitations
survive down to T � 0:5 K [5], unless the spin gap is
anomalously small. Another difficulty of this proposal is
that there should be a finite temperature transition from the
Z2 spin liquid to the higher temperature paramagnetic
phase while there is no signature of such a phase transition
in thermodynamic measurements [1].

Here we pursue a completely different line of attack and
attempt to build a ‘‘fermionic’’ spin liquid theory of the
hyperkagome Heisenberg model. This formulation has the
virtue that gapless spin liquids emerge as stable phases at
mean field level and beyond without any need for fine
tuning [6,7]. The main results of our Letter are as follows.
(i) We find that of a number of candidate spin liquid ground
states we have explored, a particularly simple fermionic
spin liquid state, one which supports Fermi surfaces of
spinons, emerges as a promising candidate for the ground
state of the nearest neighbor Heisenberg model on the
hyperkagome lattice. This result is obtained by a combi-
nation of exact diagonalization, a projective symmetry
group (PSG) analysis [6] of mean field ground states, and
Gutzwiller projected variational wave function calcula-
tions. (ii) We then show, using a Gutzwiller renormalized
mean field theory [8], that the specific heat of this spin
liquid state is quite similar to the experimentally observed
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FIG. 1 (color online). Exact diagonalization (ED) results (solid
line) for the inverse uniform magnetic susceptibility 1=� com-
pared with experiments (open circles). The ED was done on a
single unit cell of the hyperkagome lattice (inset) with J ¼
304 K chosen to reproduce the high temperature experimental
1=�.
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specific heat of Na4Ir3O8 for T * 5 K. This spinon Fermi
surface state therefore seems to be a good starting point to
understand the physics of this material over a wide range of
temperatures in the same way that Fermi liquid theory is a
good starting point to understand conventional metals.
However, as in conventional metals, the Fermi surfaces
could be unstable, at very low temperature, due to small
additional interactions. (iii) We considered a symmetry
analysis of possible low temperature instabilities of the
spinon Fermi surface state which yields candidate states
with line nodes in the spinon dispersion. We discuss im-
plications of these states for the specific heat data.

Model and exact diagonalization.—We begin with an
exact diagonalization (ED) study of the nearest neighbor

s ¼ 1=2 Heisenberg modelH ¼ 1
2

P
ijJij ~Si � ~Sj, on a single

12-site unit cell of the hyperkagome lattice formed by the
Ir sites in Na4Ir3O8 (see inset of Fig. 1). Here Jij is the

exchange coupling on the bond ij, and we keep only the
nearest neighbor antiferromagnetic exchange interaction,
J > 0. Figure 1 displays the ED result for ��1ðTÞ with a
choice of J ¼ 304 K which, as shown, reproduces the
experimental data in the range 150–300 K. Over the lim-
ited temperature range T ¼ 200–300 K, the ��1ðTÞ from
ED can be fit by an apparent ‘‘Curie-Weiss’’ law with
�W � �730 K. [The upturn in ��1ðTÞ in the ED for T &
50 K arises from a nonzero spin gap on a single unit cell.]
ED calculations of ��1 with next nearest neighbor
Heisenberg exchange J0 suggest that jJ0j is unlikely to be
larger than �0:1J.

Specific heat experiments, after subtraction of the pho-
non part to extract the magnetic contribution, find a broad
peak in C=T at Tp � 25 K with a peak height ðC=TÞmax �
55 mJ=K2=mol Ir [1]. While finite size effects are clearly
important in the ED calculations at low T, it is nevertheless
encouraging that the ED result for C=T of the Heisenberg
model with J ¼ 304 K, shown in Fig. 3, has a broad peak
at Tp � 20 K with a peak height of ðC=TÞmax �
70 mJ=K2=mol Ir.

Since the s ¼ 1
2 Heisenberg model appears to capture

aspects of the experimental data onNa4Ir3O8, we turn to an
analysis of variational candidates for the ground state of
this model in order to understand the emergence of a
gapless quantum spin liquid in Na4Ir3O8.

Hyperkagome spin liquid states.—We begin by repre-
senting spin operators in terms of fermionic spinors, as
~Si ¼ 1

2 f
y
i� ~���fi�, where each site is constrained to have a

single fermion, i.e., fyi�fi� ¼ 1. The Hamiltonian H, writ-
ten in terms of these fermions, can be decoupled in both the
hopping and pairing channels at mean field level leading to
a mean field Hamiltonian

HMF ¼ 3

8

X
hiji

Jij

�
1

2
TrðUy

ijUijÞ ��y
i Uij�j þ H:c:

�

þX
i

~ai ��y
i ~��i; (1)

which is given in a manifestly SU(2) invariant form where

�T
i ¼ ðfi"; fyi#ÞT is a Nambu spinor,

U ij ¼ �ij �ij

��
ij ���

ij

� �
(2)

are the mean field hopping and pairing amplitudes, and ~ai
is a Lagrange multiplier which enforces, on average and in
an SU(2) invariant manner, the single occupancy constraint

hfyi�fi�i ¼ 1.
Guided by experiment, we assume that the ground state

of H is a spin liquid, and therefore seek variational mean
field fermion ground states which preserve all lattice sym-
metries, global spin-rotation symmetry, and time-reversal
symmetry. The identification of such distinct symmetric
spin liquid candidates requires a ‘‘projective symmetry
group’’ (PSG) analysis [6] that takes into account the space
group symmetries of the lattice together with all possible
gauge transformations which change the mean field fer-
mion state but leave the spin wave function intact. Under a
PSG transformation, spinors transform as �i ! GX

i �XðiÞ
where GX

i is an SU(2) gauge transformation associated
with the space group transformation X. We require that
transforming a mean field ansatz by

Uij ! GX
i UXðiÞXðjÞGX

j ; ~ai � ~� ! GX
i ð ~aXðiÞ � ~�ÞGX

i (3)

leaves HMF invariant. We have constructed a systematic
classification of spin liquid ground states by constructing
all PSGs with nontrivial GX

i associated with the point
group of the hyperkagome lattice. This group turns out to
be equivalent to the octahedral group O and consists of
twofold rotations about each site, threefold rotations for
each triangle and fourfold screw rotations for each thread
(see Ref. [4]). Details of our calculation will be presented
elsewhere [9].
Here, for simplicity, we focus on the family of states

Uij ¼ �ij�3 þ �ij�1; ~ai ¼ ��ẑ; (4)

where �ij is real and positive, �ij is real but alternates sign

as discussed below and only the bonds ij that have a finite
exchange Jij have finite Uij. This family of states covers

most of the states resulting from our PSG analysis. �ij and

�ij are chosen to be invariant under translations and three-

fold rotations through each triangle. However, twofold
rotations about each site and the fourfold screw rotations
both need to be followed by the gauge transformation
GX

i ¼ i�3, where X is either of these transformations.
This second requirement fixes the sign of the pairing fields
�ij. In addition to these spatial symmetries, we have

imposed time-reversal (T) invariance by requiring that a
T transformation followed by GT

i commute (or anticom-
mute) with the spatial transformations. Since T sends
Uij ! �Uij, we found GT

i ¼ i�2 satisfies all require-

ments. The combination of all these symmetries com-
pletely determines the form of Uij in Eq. (4).
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It turns out that due to enhanced symmetry in special
limits, the ansatz of Eq. (4) describes three different spin
liquid states depending on the variational parameter the U
(1)-uniform state, the U(1)-staggered state, and the Z2

state. The U(1) uniform state has �ij > 0, no pairing

(�ij ¼ 0), and a U(1) phase invariance. On the other

hand, the U(1) staggered state has no hopping �ij ¼ 0

and finite �ij � 0 which alternates sign on adjacent tri-

angles. The Z2 family of states arises when both pairing
and hopping are present.

In general, we need not keep the time-reversal symmetry
of the ansatz in Eq. (4). If we let �ij ¼ uij cos�ij and�ij ¼
uij sin�ij, so that sgnð�ijÞ ¼ sgnð�ijÞ, we can extend the

ansatz to

Uij ¼ iuij exp

�
�i

�

2
n̂ij � ~�

�
; ~ai ¼ ��ẑ; (5)

where n̂ij ¼ ẑ cos�ij þ x̂ sin�ij. This extended form then

has all the same spatial symmetries of Eq. (4) but recovers
time-reversal invariance only at � ¼ 	. To determine
which of these states are viable candidates for the ground
state of the Heisenberg model, we next compute the en-
ergies of these different states as a function of the angle �,
which is the same up to a sign on all bonds, and �, with
� ¼ 	 for the time-reversal invariant states.

Energetics of candidate spin liquid states.—We have
computed the ground state energy for the above class of
states in mean field theory as well as by a numerical
Gutzwiller projection of the mean field states which yields
a physical spin wave function. The Gutzwiller projected
energy is computed using the variational Monte Carlo
(VMC) method [7,10,11].

(i) U(1)-uniform state: The mean field ground state
energy per spin is Emf

unif ¼ �0:144J. After Gutzwiller pro-

jection, we find a variational energy Eproj
unif � �0:424J, so

that E
proj
unif=E

mf
unif � 3. The energy of the projected state

compares favorably with the ED result on a single unit
cell, Eed ¼ �0:454J. In the preprojected state, three spi-
non bands cross the Fermi level. One Fermi surface is

electronlike and centered at ~K ¼ ð0; 0; 0Þ, while the other

two are holelike and centered about ~K ¼ ð	;	;	Þ. All
three have kF � 0:2	.

(ii) U(1)-staggered state: The mean field energy of this
state is Emf

stag ¼ �0:122J. Because of flat bands at the

chemical potential in this state, the energy of the projected
wave function depends somewhat on our selection of the
subset of the flat band states we fill with fermions in the
preprojected state. For various choices that we have ex-

plored the estimated VMC energy is about E
proj
stag ��0:37J,

significantly higher than the uniform state.
(iii) Z2 state: As seen from Fig. 2, the mean field energy

of the Z2 states parametrized by the variational parameter
� ¼ j�ijj is higher than that of the U(1) uniform state

(which corresponds to � ¼ 0). Even after projection, the
U(1) uniform state appears to have the lowest energy,

although the energy is quite flat as a function of � for � &
0:1	 as in the mean field theory.
(iv) Chiral states: We have also checked the energetics

of the time-reversal symmetry broken chiral U(1) spin
liquid ansatz. The uniform U(1) state is stable against
such symmetry breaking. The staggered U(1) state energy
is lowered by breaking time-reversal symmetry; however,

the lowest energy thus obtained, E
proj
chir ��0:39J, is still

higher than the uniform U(1) state energy.
In summary, the U(1) uniform state appears to be the

most favorable candidate for the ground state of the nearest
neighbor Heisenberg model on the hyperkagome lattice.
As seen from Fig. 2, the energy is a rather flat function of �
for small values of � & 0:1	. Small further neighbor cou-
plings may therefore favor Z2 states with a small pair
amplitude. We discuss this further in the concluding sec-
tion. We note that spin liquids with spinon Fermi surfaces
have also been proposed recently for some quasi-two-
dimensional frustrated magnets [11].
Application to the specific heat ofNa4Ir3O8.—Motivated

by our variational ground state calculations we next turn to
specific heat of the uniform U(1) state for the nearest
neighbor Heisenberg model in order to compare with the
data on Na4Ir3O8. Since we cannot implement the
Gutzwiller projection exactly for computing finite tem-
perature properties, we will resort to renormalized mean
field theory (RMFT) [8] which relies on simple renormal-
ization factors to account for the effect of projection. For

instance, h ~Si � ~Sjiproj ¼ gJh ~Si � ~Sjimf defines the renormal-

ization factor gJ for the energy. From our calculations, we
find that Eproj=Emf � 3 which implies gJ � 3. We there-
fore set gJ ¼ 3 to renormalize the mean field quasiparticle
dispersion and compute the RMFT result for the specific
heat of the U(1) uniform state.
As seen from Fig. 3, the computed specific heat is in

broad agreement with experiment for T * 5 K.
Remarkably, for 5 K & T & 25 K, we find C=T shows a
strong, almost linear, T dependence similar to experiment
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FIG. 2. Energetics of the Z2 family of states parametrized by �.
Points show VMC data and the solid line is the mean field result
multiplied by gJ � 3. The uniform state (� ¼ 0) appears to have
the lowest energy in this class of states.
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arising simply from the energy dependence of the spinon
density of states in the uniform U(1) state. The entropy of
this state is also in reasonable agreement with the higher
temperature data as seen from Fig. 3. We emphasize that
these are zero-parameter fits which thus serve as nontrivial
tests of our proposal. For T & 5 K, the spinon Fermi
surfaces lead to a saturation of C=T with a small 
 �
10 mJ=K2=mol Ir. A more precise estimate of 
 requires
projection of excited states—this is complicated due to the
many bands and was not attempted.

Discussion.—We have shown, based on mean field the-
ory and projected wave function studies, that the U(1)
uniform state which supports three spinon Fermi surfaces
is a viable candidate for the ground state of the s ¼ 1

2

hyperkagome Heisenberg model. This state provides a
reasonable description of the specific heat of Na4Ir3O8

over a broad temperature range T * 5 K. Such a Fermi
surface state would have a constant low temperature spin
susceptibility. Knowledge of the spinon Fermi surfaces of
the mean field Hamiltonian also allows us to construct the
(gauge invariant) wave vectors connecting different points
on these Fermi surfaces which determines the wave vector
dependence of triplet excitations.

At lower temperatures T � 5 K, experiments may be
consistent with C=T � T, suggesting that the spinon Fermi
surface could be unstable at low T due to various smaller
exchange couplings which we have ignored here. For in-
stance, small further neighbor interactions J0 � �0:1J
would tend to favor weak next neighbor pairing terms.
We have checked that such a pairing term which trans-
forms nontrivially under point group operations can gap
out most of the spinon Fermi surface leading to a Z2 state

which has line nodes where the ½110� plane (and symmetry
related planes) intersect the spinon Fermi surfaces. Such a
line-node state would lead to C=T � T at sufficiently low
T. Any Z2 spin liquid state would, however, likely undergo
a phase transition to the high T paramagnetic phase. No
such transition was observed in experiment for T * 5 K;
however we cannot rule out such a transition at lower T.
Finally, turning to the very low temperature behavior of

�, it has been recently argued that the experimental ob-
servation of a constant �ðT ! 0Þ cannot be reconciled with
a specific heat C=T � T as T ! 0 unless spin-orbit inter-
actions are taken into account [12]. It was shown that,
despite rather strong atomic spin-orbit coupling on Ir, the
effective spin model is likely still of Heisenberg type with
spin-orbit induced Dzyaloshinskii-Moriya (DM) correc-
tions. For small DM (relative to J), our results for the
energetics and specific heat would remain unchanged. So
the intermediate T state could still be a spinon Fermi
surface state, with a possible low T instability into a line-
node state as discussed. The DM coupling would, however,
strongly modify the susceptibility of such a line-node state,
which is naı̈vely expected to behave as �ðT ! 0Þ � T, and
could bring it into better agreement with experiment. The
clarification of these issues is a promising direction for
future research.
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Note Added.—During the final stages of the preparation

of this manuscript, we received a preprint [13] which
discusses related issues.
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FIG. 3 (color online). Comparison of the specific heat coeffi-
cient C=T and entropy SðTÞ of the U(1) uniform state with
measurements on Na4Ir3O8 (after phonon subtraction). The inset
compares the phonon subtracted C=T with the ED result for J ¼
304 K.
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