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We present a theory of electronic transport in graphene in the presence of randomly placed adsorbates.

Our analysis predicts a marked asymmetry of the conductivity about the Dirac point, as well as a negative

weak-localization magnetoresistivity. In the region of strong scattering, renormalization group corrections

drive the system further towards insulating behavior. These results explain key features of recent

experiments, and are validated by numerical transport computations.
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Graphene (the two-dimensional allotrope of carbon [1])
offers a chemically stable platform to host various chemi-
cal adsorbates [2–7]. Their presence strongly affects elec-
tronic transport, making graphene-based devices suitable
for chemical sensoring. A key observation in experiments
on chemically functionalized samples is a marked asym-
metry of the conductivity as a function of a back gate
voltage, which is used to steer the system across the charge
neutrality point (the Dirac point, which separates the va-
lence band from the conduction band). The conductivity
becomes symmetric only when the sample is annealed by a
strong bias current which dislodges the adsorbates.

In this Letter we provide a theory, supported by numeri-
cal simulations, that explains this experimental feature for
covalently bonded (chemisorbed) adsorbates [8–10]. Our
model is based on the tight-binding description of electrons
in graphene [11]. Chemisorbed molecules are incorporated
into this description as laterally attached additional sites,
where the on-site and coupling energies are extracted from
the band structure of a graphene sheet with regularly
placed adsorbates. Each type of adsorbate introduces a
characteristic local energy-dependent scattering potential
in the graphene, and suppresses the conductivity on one
side of the Dirac point, with only a weak effect on the other.
For example, adsorbed Hþ yields almost insulating behav-
ior in n-type graphene, while in p-type structures the
conductivity is close to that of clean material. For OH�
the role of the bands is reversed. When combined with
scattering from a random Coulomb potential [12,13], the
resulting conductivity traces (shown in Fig. 1) are consis-
tent with the findings in experiments [5,6]. For a small
adsorbate concentration, these conclusions can be drawn
from kinetic theory. For larger concentrations, we imple-
ment a recently proposed renormalization group (RG)
analysis [14,15] to account for systematic quantum cor-
rections to the conductivity resulting from multiadsor-
bate scattering. Our predictions are in good quantitative
agreement with the results of the numerical transport
computations.

In a graphene sheet, the carbon atoms are held together
via sp2-hybridized covalent bonds, while the electronic

transport takes place by hopping along � orbitals which
can participate in covalent bonding with adsorbates. The
electrons in the � band of graphene with additional ad-
sorbed atoms can be described using a tight-binding
Hamiltonian

H ¼ ��
X
hl;mi

cyl cm þX
n

H n; (1a)

H n ¼ "id
y
ndn þ �iðcy�n

dn þ c�n
dyn Þ: (1b)

σ
β
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FIG. 1 (color online). Conductivity of graphene in the pres-
ence of adsorbates (concentration ni) and Coulomb impurities
(concentration nl) as a function of charge-carrier concentration
ne (carrier density ne=Ac with Ac ¼ 3

ffiffiffi
3

p
a2=4 the area per car-

bon atom), for various ratios ni=nl ¼ ð�=2�Þx where the di-
mensionless parameter � ’ 1 characterizes the scattering
strength of the Coulomb impurities [12,13,25]. (a) Hþ, (b) OH�,
with parameters from first-principle computations (the insets
illustrate sample segments). The results are based on Eq. (7).
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The first term of Eq. (1a) corresponds to the Hamiltonian of
clean graphene, where cl are annihilation operators on sites
of the honeycomb lattice, and the nearest-neighbor cou-

pling strength � ¼ 2@vD=3a (with bond length a ¼
1:42 �A) determines the Fermi velocity vD at the Dirac
point. Each adsorbed molecule contributes a term of the
form (1b), where dn is the annihilation operator on the
adsorbate site and�n is the host position on the honeycomb
lattice. The adsorbate density is parameterized by ni=Ac,

where ni is the adsorbate-to-carbon ratio, and Ac ¼
3

ffiffiffi
3

p
a2=4 is the area per carbon atom in graphene.

The model Hamiltonian (1) can be justified by first-
principle calculations. Here we consider the adsorbates
Hþ and OH�, chosen because of the presence of ambient
water in many experiments, and which also can be selec-
tively driven towards the graphene via electric fields [3].
Using density-functional theory (DFT) [16], we find that
Hþ is described by "i ¼ 0:66�, �i ¼ 2:2�, while for OH�
"i ¼ �2:9�, �i ¼ 2:3�. These energies are comparable to
the graphene hopping energy � ¼ 2:6 eV, which necessi-
tates the nonperturbative approaches employed in this
Letter. Our DFT calculations also confirm that the adsor-
bates form covalent bonds to well-defined host sites. In the
fully relaxed configuration, both adsorbates are aligned in
the vertical direction of the graphene sheet (for illustration,
see insets of Fig. 1). Other energy scales (such as shifts of
the graphene on-site energies and next-to-nearest neighbor
couplings) are small and can be safely neglected [17,18].

The main building block of our analytical considerations
is the derivation of the scattering amplitude due to indi-
vidual adsorbates, which enters the collision term of ki-
netic theory and also features as input into the
renormalization group analysis that captures quantum cor-
rections due to multiple scattering.

In the first step we self-consistently eliminate the adsor-
bate sites from the Hamiltonian (1) via a decimation pro-
cedure. The electron wave function can be written as
j�i ¼ P

lc ljli þP
n�njniad � jc i � j�i, where the am-

plitudes c l and states jli refer to the carbon sites, while�n

and jniad refer to the adsorbate sites. We now project the
Schrödinger equation onto an adsorbate site, hnjadð"�
H Þj�i ¼ 0 and find that the amplitude �n ¼
c �n

�i=ð"� "iÞ on the adsorbate is related to the ampli-

tude of its host carbon site. The amplitudes �n hence can
be eliminated, which results in the reduced Hamiltonian

~H ¼ ��
X
hl;mi

cyl cm þX
n

Vcy�n
c�n

; V ¼ �2
i

"� "i
;

(2)

where the energy-dependent effective potential V corre-
sponds to the self-energy which an adsorbate induces for
electrons in graphene.

While the effective potential V displays a distinct reso-
nant energy dependence, the analysis of the resulting con-

ductivity properties requires combining this with the
specific energetics of the graphene sample, and, in particu-
lar, with the existence of the conical point at which the
density of states drops to zero. We therefore now turn to the
analysis for the Green’s function G ¼ ð"�H þ i0þÞ�1

of the system.
For a single, well isolated adsorbate, the Green’s func-

tion can be obtained exactly over the entire energy range by
utilizing the T-matrix representation

G ¼ G0 þ G0TG0; T � ð1� Vcy�c�G0Þ�1Vcy�c�;
(3)

where G0 is the Green’s function of the clean graphitic
system and T characterizes the scattering strength [19].
Expanding T in powers of VG0, and utilizing the transla-
tional and crystalline symmetries of graphene (so that
hnjG0jni � g0 for all n), the resulting series for G can be
resummed yielding

T ¼ t0ð"Þcy�c�; t0ð"Þ ¼ �2
i

"� "i � �2
i g0ð"Þ

: (4)

In the latter expression, t0ð"Þ describes resonant scattering
of electrons in graphene from an adsorbate level renormal-
ized by hybridization with states in the � band. This
hybridization always shifts the effective resonance level
towards the Dirac point, which can be understood as a
consequence of level repulsion which pushes additional
states towards the region with the lowest density of states.
The real part of �2

i g0ð�Þ [with Reg0ð"Þ ¼ �Reg0ð�"Þ �
ðAc=2�@

2v2
DÞ" lnðj"j=�Þ, and � a high-energy cutoff]

gives a formal description of this systematic shift, while
the imaginary part [with Img0 ¼ ���0ð"Þ, and �0ð"Þ the
density of states per carbon atom] indicates a decrease of
the resonance width near the Dirac point.
Ignoring (for the moment) the effects of phase-coherent

multiple scattering off the adsorbates, the conductivity of a
disordered sample with a finite adsorbate concentration ni
can now be obtained in kinetic transport theory. Because of
C6 rotational symmetry of graphene, the conductivity is
isotropic. Using the scattering rate obtained from (4),

��1
k ¼

�
2�

@

�
nijt0ð"kÞj2�0ð"kÞ; (5)

where "k is the graphene dispersion relation, we find the
conductivity of graphene in the presence of the adsorbates,

	 ¼
�
gse

2

h

�
@
2

Acnijt0ð"FÞj2
hvki"F
hv�1

k i"F
; (6)

where h� � �i"F denotes integration along the Fermi line,

vk � jrk"kj=@, and gs ¼ 2 accounts for spin degeneracy.
Motivated by recent experimental findings for selec-

tively adsorbed Hþ and OH� [3], we show in Fig. 2 the
corresponding dependence of the conductivity in Eq. (6) on
the Fermi energy (thick dashed curve). A key feature is the
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marked asymmetry of the conductivity about the Dirac
point caused by the energy dependence of the T matrix
(4). For Hþ, over a range of energies in the conduction
band the conductivity is small, while it rises linearly as one
moves into the valence band, or far into the conduction
band. For OH� the role of the bands is reversed.

In actual devices, adsorbate scattering is supplemented
by scattering off localized charges. These contribute to the
scattering rate a term ��1

l ¼ nl��
2=ð@j"jÞ, where nl is the

number of localized charges per carbon atom, and � ’ 1 is
a dimensionless numerical factor [12,13]. For energies in
the linear part of the clean graphene dispersion relation, the
resulting conductivity can be written in the form

	 ¼ 2�
ffiffiffi
3

p
nl�

gse
2

h
½xjt0ðneÞ=�j2 þ n�1

e ��1; (7)

where x ¼ ð2�=�Þðni=nlÞ characterizes the relative

amount of the two types of disorder, and ne ¼
gs"

2
F=ð2

ffiffiffi
3

p
��2Þ is the number of charge carriers per car-

bon atom. Figure 1 shows the charge-carrier dependence of
the conductivity for various values of x. For x ¼ 0 the
conductivity shows the symmetric linear charge-carrier
dependence characteristic for charged impurity scattering.
For an increasing adsorbate concentration, the conductivity
develops the marked asymmetry discussed above, while
the Coulomb scattering only dominates very close to the
Dirac point, where it results in an additional dip.

Different types of disorder can also be discriminated via
mesoscopic corrections to the conductivity, which origi-
nate in phase-coherent multiple scattering. In general, dis-
order in graphene can be characterized in terms of five
dimensionless parameters � ¼ f�0; �?; �z; �?; �zg,
which classify the breaking of the symmetries of the hon-
eycomb lattice [20]. Three of these parameters describe
intravalley scattering preserving the C6v symmetry (�0),
the C3v symmetry (�z), or no point symmetry (�?), re-
spectively. Analogously, intervalley scattering is described
by the parameters�z and�?. In terms of these parameters,
the conductivity of graphene in kinetic theory takes the
form

	 ¼ gse
2

@�2

�
�0

2
þ �? þ �? þ 3

2
�z þ 3

2
�z

��1
: (8)

The scattering potential for adsorbates is such that

�0 ¼ �z ¼ �?=2 ¼ Acnijt0ð"FÞj2
2�hvki"F=hv�1

k i"F
;

�z ¼ �? ¼ 0:

(9)

This puts chemically functionalized graphene into the so-
called orthogonal symmetry class, for which one expects a
negative weak-localization magnetoresistance [20], as well
as strong Anderson localization when the adsorbate con-
centration increases [14].
These corrections to kinetic theory can be studied sys-

tematically via a renormalization group analysis [21],

which provides effective scattering parameters ~� that re-
place the bare values in Eq. (8). For disorder representative
of the symmetries in graphene, the flow equations were
derived in Ref. [14]. An equivalent formulation in terms of
the parameters � given above can be found in Ref. [15],
and takes the form

_�0 ¼ 2�0ð�0þ�?þ�?þ�zþ�zÞþ�?�zþ2�?�z;

_�? ¼ 4ð�0�zþ�?�?þ�z�zÞ;
_�z ¼ 2ð�0�?��z�0þ�?�zþ�z�zÞ;
_�? ¼ 4�0�zþ�2

?þ�2
z ;

_�z ¼ 2�zð��0��?þ�zþ�?��zÞþ2�0�?þ�?�z;

_"¼ "ð1þ�0þ�?þ�?þ�zþ�zÞ; (10)

where _X � dX=d lnðL=aÞ and L is a running length. This
RG flow is integrated using the bare parameters � and " ¼
"F as initial conditions and terminated when " reaches a
high-energy cutoff "c. We here implement this procedure
for the energy-dependent initial conditions (9). A typical
solution of the flow equations as a function of lnðL=aÞ is
shown in the inset in Fig. 2(b) (left panel). The dominance
of �? over �z and �? demonstrates that chemically func-
tionalized graphene stays in the orthogonal symmetry class
when the adsorbate concentration is increased. As shown
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FIG. 2 (color online). Conductivity of graphene in the pres-
ence of adsorbates of variable concentration ni. (a) H

þ, (b) OH�.
The dashed thick curve is the prediction (6) of kinetic transport
theory with energy-dependent T matrix (4). The solid curves in
the left panels show the expected quantum corrections based on
the renormalization group analysis [Eqs. (10)]. In the right
panels, the solid curves show the results of numerical transport
computations. The inset in the left panel of (b) shows the RG
flow (10) of the dimensionless scattering parameters for OH� at
" ¼ �0:15� and ni ¼ 0:01.
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by the curves in the left panels of Fig. 2, over the whole
energy range and for both types of adsorbates (Hþ and
OH�) the renormalization leads to a suppression of the
conductivity and drives the system towards insulating
behavior.

In order to verify these expectations we carried out
numerical transport computations, which are directly based
on the model Hamiltonian (1). The conductivity 	 is
obtained by finite-size scaling of the Landauer conduc-
tance G ¼ 	W=L of graphene ribbons with respect to

width (in the range 50<W=
ffiffiffi
3

p
a < 100) and length (in

an adaptively chosen range that avoids the onset of
Anderson localization [22]). For each geometry the con-
ductance is computed in an efficient recursive Green’s
functions algorithm [23], and averaged over 104 disorder
realizations. The resulting dependence of the conductivity
on the Fermi energy (right panels of Fig. 2) is in good
agreement with the expectations based on the RG analysis
(left panels of Fig. 2). In particular, the numerical results
clearly confirm the suppression of the conductivity due to
quantum corrections.

In summary, we have presented a theory of electronic
transport for graphene in the presence of chemisorbed
molecules. We find that each type of adsorbate results in
a characteristic Fermi-energy dependence of the conduc-
tivity, which is asymmetric about the charge neutrality
point and distinguishes p- and n-type transport. In a range
of energies, the conductivity is strongly suppressed, which
could be used to increase the on-off ratio in graphene-
based field-effect transistors. These effects are further en-
hanced by quantum corrections driving the system towards
the localized state at higher adsorbate concentrations. In
experiments, the adsorbate concentration can be increased
by variable deposition times, or by driving adsorbates to
the sample using top gates [3,5,6], while the localization
effects can be probed via magnetoresistivity experiments
on graphene flakes at low temperatures [24].
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