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A quantum theory of optical Bloch oscillations and Zener tunneling (ZT) in arrays of coupled

waveguides is theoretically presented, and the particlelike behavior of photons undergoing ZT is high-

lighted. In singly-periodic arrays excited by a photon-number-state input beam, each photon behaves as a

classical particle which independently undergoes a coin-toss ZT event with a probability described by

classical Zener theory. In binary arrays, excitation with two tilted beams enables us to observe the Hong-

Ou-Mandel interference for two photons undergoing Bloch-Zener oscillations.
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Bloch oscillations (BO) and Zener tunneling (ZT) are
important phenomena associated with the coherent motion
of quantum particles in periodic potentials driven by an
external force. In quantum systems, BO have been ob-
served for electrons in biased semiconductor superlattices
and for Bose-Einstein condensates in accelerating optical
lattices. In their essence, BO and ZT are wave phenomena.
As such, they can be observed for classical waves as well,
such as electromagnetic or acoustic waves. In the past
decade, several experiments have shown optical analogues
of BO and ZT in specially designed photonic lattices [1–6].
In particular, arrays of coupled waveguides with transverse
refractive index gradients enabled a direct visualization of
BO and ZT in the spatial domain [6]. These experiments,
which used classical light to excite the lattices, exploited
the wave nature of light and some analogies between
Maxwell and Schrödinger wave equations in periodic me-
dia. However, it is known that in certain conditions light
may behave more as a stream of photons rather than as an
electromagnetic wave. This is the case, for instance, of
nonclassical light passing through a beam splitter (see, for
instance, [7,8]). Coupled waveguides are known to behave
similarly to beam splitters [9], and are thus suited to probe
strictly quantum signatures of light. For instance, Hong-
Ou-Mandel quantum interference [7] has been recently
observed using silicon-based coupled waveguides [10]. In
another recent experiment, Bromberg et al. [11] suggested
nontrivial photon correlations in coupled waveguide arrays
illuminated by two-photon states and mimicked them using
classical intensity correlation measurements. These experi-
ments suggest that a particlelike behavior of photons
undergoing optical BO and ZT, hidden in classic wave
theory, might be manifested using nonclassical fields. It
is the aim of this Letter to present a quantum theory of
optical BO and ZT in waveguide arrays, highlighting cer-
tain particlelike signatures of photons undergoing ZT.

Classical model of optical BO and ZT.—Let us consider
propagation of a traveling and quasimonochromatic TE-
polarized light wave at carrier frequency! ¼ 2�c0=� in a
weakling guiding one-dimensional waveguide array, with

periodic refractive index profile nðxÞ and with a super-
imposed transverse refractive index gradient Fx, which is
suited to study optical BO and ZT [6,12]. In the paraxial
and quasimonochromatic approximations, the slow evolu-
tion of the vector potential envelope c ðx; z; tÞ along the
paraxial z direction can be readily obtained from
Maxwell’s equations (see, for instance, [13]) and is gov-
erned by the scalar wave equation

i½c z þ ð1=vgÞc t� ¼ �ð1=2�Þc xx þ VðxÞc ; (1)

where � ¼ ð!=c0Þns is the propagation constant, ns is
the substrate refractive index, vg ¼ ðd�=d!Þ�1 is the

group velocity of light, and VðxÞ ¼ �½ns � nðxÞ �
Fx�=ns. In writing Eq. (1), I neglected nonlinearities and

group-velocity dispersion, and assumed Aðx; z; tÞ ¼
½@=ð2�0nsc0!0Þ�1=2½c expð�i!tþ i�zÞ þ c:c:�uy for the

vector potential. With such a normalization, the cycle-
averaged total energy of the electromagnetic field [13] is
given by U ¼ ð@!=vgÞ

R
dxdzc yc ¼ @!

R
dxdtc yc .

For monochromatic beams, the envelope c ðx; zÞ can
be decomposed as a superposition of orthonormal

Bloch states ’nðx; �Þ of the array as c ðx; zÞ ¼P
n

R�=a
��=a d�cnðz; �Þ’nðx; �Þ, where n is the band index,

��=a < � <�=a, � is the Bloch wave number (quasi-
momentum), and a is the lattice period. ’nðx; �Þ�
exp½�2�iEnð�Þz=�� satisfies Eq. (1) with F ¼ 0, where
Enð�Þ is the dimensionless dispersion curve for the nth
band of the array [14]. The evolution equations for the
spectral coefficients cnðz; �Þ govern the onset of BO and
ZT, and have been previously considered in [12,14]. In
particular, the fractional light power trapped in the nth
band of the array (band occupancy) is given by ZnðzÞ ¼R
d�jcnðz; �Þj2=Pn

R
d�jcnðz; �Þj2. The value of the spec-

tral coefficient cnðz; �Þ at the entrance plane z ¼ 0 is

determined by the angular spectrum ~gð�Þ ¼ ð2�Þ�1=2 �R
dxgðxÞ expð�i�xÞ of the incident beam gðxÞ ¼ c ðx; 0Þ

according to [14] cnð0; �Þ ¼ P1
l¼�1 Bnð�þ 2�l=aÞ~gð�þ

2�l=aÞ, where Bnð�Þ is the plane-wave excitation function
for the band n defined as in Ref. [14]. For broad beam
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excitation with an incidence angle � ¼ ��=ð2�Þ smaller
than the Bragg angle �B ¼ �=ð2aÞ, the array is mostly
excited in its first band [14], and for negligible interband
coupling the single-band wave packet would undergo un-
damped BO with a spatial periodicity zB ¼ �F=a [6,14].
As the gradient F increases, ZT cannot be neglected and
BO are damped. In singly periodic arrays, ZT typically
manifests as a cascading of transitions to higher-order
bands [6]. Figure 1 shows an example of BO in a 40-
mm-long array excited at � ¼ 1:44 �m by a broad
Gaussian beam at normal incidence. Owing to ZT, the
BO motion is damped [Fig. 1(d)], with a characteristic
staircase profile of band occupancy Z1 which drops at
each ZT burst [Fig. 1(e)]. Radiation tunnelled into
higher-order bands is rapidly refracted away from the
main wave packet [Fig. 1(d)]. In doubly periodic (binary)
arrays [Fig. 2(a)], light remains trapped in the first two
bands of the array, i.e., ZT to higher-order bands is negli-
gible, and a sequence of periodic or aperiodic beam split-
ting and recombination, superimposed to BO and referred
to as Bloch-Zener (BZ) oscillations [12,15], are observed.
Examples of BZ oscillations in a binary array, for broad
beam excitation at two different incidence angles, are
shown in Fig. 2.

Quantum description.—To describe propagation of
quantized fields along the array, I follow a procedure
similar to that adopted in the quantum theory of fiber soli-
tons [16], which consists in writing Eq. (1) in Hamiltonian
form assuming z as an independent variable. Introducing
the new field � ¼ i@c y and the Hamiltonian H¼R
dxdtH with density H ¼�ði=2�Þ�xc x�ð1=vgÞ �

�c t� iVðxÞ�c , the Hamilton equations c z ¼
ð�H=��Þ, �z ¼ �ð�H=�c Þ yield Eq. (1) and its com-
plex conjugate, so that � is canonically conjugated to c .

Quantization is accomplished by replacing the classical

fields c and � with the operators ĉ ðx; tÞ and �̂ ¼
i@ĉ yðx; tÞ satisfying the commutation relations ½ĉ ðx; tÞ;
ĉ yðx0; t0Þ� ¼ �ðx� x0Þ�ðt� t0Þ and ½ĉ ðx; tÞ; ĉ ðx0; t0Þ� ¼
½ĉ yðx; tÞ; ĉ yðx0; t0Þ� ¼ 0. By introducing the spectral de-

composition ĉ ðx; tÞ ¼ ð2�Þ�1=2
R
d�	̂ðx;�Þ expð�i�tÞ,

the second-quantized Hamiltonian operator reads

Ĥ ¼ @

Z
dxd�

�
1

2�
	̂y

x 	̂x þ
�
VðxÞ � �

vg

�
	̂y	̂

�
(2)

whereas the field energy is described by the operator

Û ¼ @!
R
dxd�	̂yðx;�Þ	̂ðx;�Þ. The commutation re-

lations ½	̂ðx;�Þ; 	̂yðx0;�0Þ� ¼ �ðx� x0Þ�ð���0Þ and

½	̂ðx;�Þ; 	̂ðx0;�0Þ� ¼ ½	̂yðx;�Þ; 	̂yðx0;�0Þ� ¼ 0 hold.
In the Schrödinger picture, the quantum field is described
by a vector state jQðzÞi which evolves according to

i@ðd=dzjQiÞ ¼ ĤjQi. The state jQi can be expanded in

Fock space as jQi ¼ P
nanjfðnÞðx;�; zÞi, where the

n-photon number state jfðnÞi is defined by [16]

jfðnÞi¼
Z
dxd�

fðnÞðx;�;zÞffiffiffiffiffi
n!

p 	̂yðx1;�1Þ���	̂yðxn;�nÞj0i
(3)

with the normalization conditions
P

njanj2¼1 andR
dxd�jfðnÞðx;�;zÞj2¼1. Note that, as ÛjfðnÞi¼

n@!jfðnÞi, the Fock state jfðnÞi is obtained from the vac-
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FIG. 1 (color online). (a) Schematic of a singly periodic wave-
guide array. (b) Refractive index profile. (c) Band diagram.
(d) Damped optical BO (pseudocolor map of jc ðx; zÞj2) for a
broad Gaussian input beam at normal incidence (index gradient
F ¼ 18:46 m�1, � ¼ 1:44 �m). (e) Fractional light power Z1ðzÞ
trapped in the first band of the array.
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FIG. 2 (color online). (a) Schematic of a binary array made of
a sequence of alternating wide and narrow waveguides.
(b) Refractive index profile. (c) Band diagram. (d) Plane-wave
excitation coefficients Bn for low-order bands versus incidence
angle � ¼ ��=ð2�Þ, normalized to the Bragg angle �B ¼
�=ð2aÞ. (e) and (f) BZ oscillations when the array is excited
by a broad Gaussian beam at either �1 ¼ �0:8�B [in (e)] and
�2 ¼ 1:2�B [in (f)]. F ¼ 3:6 m�1, � ¼ 1:44 �m.

PRL 101, 193902 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

7 NOVEMBER 2008

193902-2



uum state j0i by creating n photons with space-frequency

weighting function fðnÞ. The evolution equation for fðnÞ,
obtained from the Schrödinger equation and using the
commutation relations of field operators, reads

i
@fðnÞ

@z
¼ Xn

l¼1

�
� 1

2�

@2

@x2l
þ VðxlÞ ��l

vg

�
fðnÞ: (4)

Owing to the bosonic nature of photons, solely symmetric

functions fðnÞ should be considered. Here I focus on propa-
gation of monochromatic fields, so that in previous equa-
tions I may disregard integration over different spectral
components � and use a single (renormalized) bosonic

creation operator 	̂yðxÞ (e.g., at frequency� ¼ 0) satisfy-

ing the commutation relations ½	̂ðxÞ; 	̂yðx0Þ� ¼ �ðx� x0Þ
and ½	̂ðxÞ; 	̂ðx0Þ� ¼ ½	̂yðxÞ; 	̂yðx0Þ� ¼ 0. The simplest
n-photon number state [Eq. (3)], denoted by jgin, is ob-

tained by assuming fðnÞ ¼ gðx1; zÞgðx2; zÞ . . . gðxn; zÞ,
where the function gðx; zÞ satisfies the wave equation (1)
with the normalization

R
dxjgðx; zÞj2 ¼ 1. In this case one

has jgin ¼ ð1= ffiffiffiffiffi
n!

p ÞðR dxgðx; zÞ	̂yðxÞÞnj0i, a state which

describes the excitation of the optical system with an
n-photon number state input beam with a spatial profile
gðx; 0Þ at the entrance plane z ¼ 0. For a given set of
normalized and orthogonal solutions g1ðx; zÞ; g2ðx; zÞ; . . .
to Eq. (1), using Eqs. (3) and (4) one can also construct
the n-photon number state jg1; g2; . . .in1;n2;... ¼ jg1in1 �jg2in2 � . . . , which describes excitation of the optical sys-

tem with a set of independent beams carrying n1; n2; . . .
photons (n ¼ n1 þ n2 þ . . . ). The classical picture of BO
and ZT is retrieved from the quantum model when the
input beam is in a coherent state (classical light). In fact,
the vector state jg;
icoh �

P1
n¼0 anjgin, obtained by a

superposition of photon number states jgin with a

Poisson distribution an ¼ expð�j
j2=2Þ
n=
ffiffiffiffiffi
n!

p
with c

number
, is an eigenstate of the field annihilation operator

	̂ðxÞ, 	̂ðxÞjg;
icoh ¼ 
gðx; zÞjg;
icoh, where gðx; zÞ
evolves according to Eq. (1). Therefore the expectation

value cohhg;
j	̂ðxÞjg;
icoh ¼ 
gðx; zÞ yields the classical
solution of the wave equation (1) for an input beam profile

gðx; 0Þ. More generally, for a nonclassical state jQi
obtained by an arbitrary superposition of photon number
states jgin with amplitudes an, one can readily show that

the expectation value of 	̂yðxÞ	̂ðxÞ yields the classic wave
optics intensity distribution, i.e., hQj	̂yðxÞ	̂ðxÞjQi ¼
hnijgðx; zÞj2, where hni ¼ P

nnjanj2 is the mean photon
number of the input beam. To highlight strictly quantum
aspects of BO and ZT using nonclassical light, the photon
statistics in the various bands of the array has to be
considered.

Quantum signatures of ZT.—As a first example of parti-
clelike behavior of photons in ZT, let us consider a singly
periodic array illuminated by a broad Gaussian beam with
(normalized) spatial profile gðx; 0Þ and with a photon sta-
tistics an. For nearly normal incidence, the lowest band of
the array is excited. The state vector of the system is given

by jQi ¼ P
nanjgin, where gðx; zÞ evolves according to

Eq. (1). Let us indicate by PðlÞðnÞ the joint photon distri-
bution to find n1; n2; . . . photons in the l1th, l2th,. . . bands
of the array, respectively, where n ¼ ðn1; n2; . . .Þ and l ¼
ðl1; l2; . . .Þ. To calculate PðlÞðnÞ at a given propagation
distance z, I expand the field gðx; zÞ as a superposition of
normalized wave packets g1ðx; zÞ; g2ðx; zÞ; . . . belonging to
the different bands of the array (see, e.g., [14]): gðx; zÞ ¼ffiffiffiffiffiffiffiffiffiffiffi
Z1ðzÞ

p
g1ðx; zÞ þ

ffiffiffiffiffiffiffiffiffiffiffi
Z2ðzÞ

p
g2ðx; zÞ þ . . . , where ZlðzÞ � 1 is

the fractional occupancy of band l calculated by the clas-

sical ZT model. The photon distribution PðlÞðnÞ is then
readily obtained after a multiple binomial expansion of

the operator ð ffiffiffiffi
Z

p
1b̂

y
1 þ ffiffiffiffi

Z
p

2b̂
y
2 þ . . .Þn entering in the pho-

ton number state jgin, where b̂yk � R
dxgkðx; zÞ	̂yðxÞ. For

instance, the (marginal) photon distribution PðlÞðnÞ to find
n photons in the lth band of the array, calculated with this
procedure, yields

PðlÞðnÞ ¼ X1
k¼n

jakj2 k
n

� �
Zn
l ðzÞ½1� ZlðzÞ�k�n: (5)

The mean photon number in the lth band is readily calcu-

lated as hnli ¼
P

nnP
ðlÞðnÞ ¼ hniZlðzÞ, where hni ¼

ðPnnjanj2Þ is the mean photon number of input beam. In
particular, the mean photon number hn1i participating in
the BO motion decays with the same law�Z1ðzÞ of classic
ZT theory shown in Fig. 1(e). The particlelike behavior of
photons undergoing ZT is revealed when the photon sta-
tistics for a coherent and for a photon number state input
beams are compared. In the former case, janj2 is a
Poissonian distribution with mean hni and variance
h�n2i ¼ hni. From Eq. (5) it follows that the photon dis-

tribution Pð1ÞðnÞ remains Poissonian with reduced mean
hn1i ¼ Z1ðzÞhni and variance h�n21i ¼ hn1i. Conversely,
for a photon number state input beam, i.e., for an ¼
�n;n0 , a binomial distribution Pð1ÞðnÞ ¼ ½n0!=n!ðn0 �
nÞ!�Zn

1ðzÞ½1� Z1ðzÞ�n0�n [Pð1ÞðnÞ ¼ 0 for n > n0] is ob-
tained, with photon mean hn1i ¼ Z1ðzÞn0 and variance
h�n21i ¼ Z1ðzÞ½1� Z1ðzÞ�n0. Such a distribution, analo-
gous to that created by a beam splitter excited by a photon
number state in one port, and the vacuum state in the other
one, provides a clear signature of the particlelike behavior
of photons [8]: each photon in the initially excited band
behaves, during the BO motion, like a ‘‘classical particle’’
which independently undergoes a Bernoulli trial (coin toss)
at each ZT burst with a cumulative tunnelling probability
into other bands given by 1� Z1ðzÞ. The binomial distri-
bution of photons remaining in the initial band then follows
from simple combinatory arguments [8].
As a second example, I consider two-photon excitation

of a binary array by two nearly plane-wave beams g1 and
g2 at incidence angles �1 and �2 [Fig. 2(a)]. Each wave is
assumed to be prepared in a single photon number state.
The angle �1 of the first beam is chosen to efficiently excite
the first-band Bloch mode ’1ðx; �Þ with transverse wave
number � ¼ 2��1=�, whereas the angle �2 of the second
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beam is correspondingly tuned to excite the second-band
Bloch mode’2ðx; �Þwith the samewave number �. This is
achieved by assuming �2 ¼ �1 þ 2�B. For example, for
the array of Fig. 2 one can assume �1 ¼ �0:8�B and �2 ¼
1:2�B, which ensure efficient single-band excitation [see
Fig. 2(d)]. As ZT to higher-order bands is negligible,
the two photons remain trapped in the two lowest-order
bands. According to the acceleration theorem, the quasi-
momentum drifts as �0 ¼ �� 2�Fz=� [14] and propa-
gation in the array yields ðg1ðx; zÞ; g2ðx; zÞÞT ¼
expði
ÞSð’1ðx; �0Þ; ’2ðx; �0ÞÞT , where SðzÞ is the ZT ma-
trix and 
ðzÞ an unimportant phase term. The ZT matrix is
unitary, with Sn;lð0Þ ¼ �n;l, S22 ¼ S	11, and S21 ¼ �S	12.
After the introduction of the bosonic creation operators

ây1 ¼ R
dx’1ðx; �0Þ	̂yðxÞ and ây2 ¼ R

dx’2ðx; �0Þ	̂yðxÞ of
modes ’1ðx; �0Þ and ’2ðx; �0Þ, the state vector of the sys-
tem may be written as

jQi ¼ ½S11ðzÞây1 þ S12ðzÞây2 �½S21ðzÞây1 þ S22ðzÞây2 �j0i:
(6)

The joint probability Pð1;2Þð1; 1Þ to find one photon in each

of the two bands is Pð1;2Þð1; 1Þ ¼ jS11S22 þ S12S21j2. The
two terms S11S22 and S12S21 describe two possible paths
which correspond, the former to the absence of ZT (each
photon remains in its original band), the latter to two ZT
events (each photon undergoes ZT into the other band).

Pð1;2Þð1; 1Þ vanishes when the two paths interfere destruc-
tively. This leads to a photon bunching effect and entan-
glement of photons in the two bands, fully analogous to the
Hong-Ou-Mandel interference in a 50% beam splitter
[7,8]. An example of photon bunching in a binary array
is shown in Fig. 3(a). Here the index gradient F has been
tuned to achieve �50% ZT probability at each ZT burst.

The joint probability Pð1;2Þð1; 1Þ thus switches from �1 to
�0 at successive bursts. While each photon alone would
undergo a sequence of BZ oscillations shown in Figs. 2(e)

and 2(f), the expectation value h	̂yðxÞ	̂ðxÞi for the two-
photon state, shown in Fig. 3(b), is given by the incoherent
superposition jg1ðx; zÞj2 þ jg2ðx; zÞj2, the absence of inter-
ference being due to the lack of a definite phase relation-
ship between the two photons [17]. The wave packets
belonging to the two Bloch bands follow distinct paths

[denoted by dashed lines in Fig. 3(b) for eye guiding] and
are spatially separated after each ZT burst. Therefore,
photon coincidence measurements of the two spatially
separated beams can be performed in near field to check
photon bunching. It should be noted that imperfections of
the array, such as nonuniformity of waveguide spacing,
affect the scattering ZT matrix, and hence the joint proba-

bility Pð1;2Þð1; 1Þ; however, BZ oscillations and quantum
interference are not destroyed for slight deviations [18].
In conclusion, a quantum theory of BO and ZT in optical

lattices has been presented, and particlelike aspects of
photons undergoing BO and ZT in singly and doubly
periodic lattices have been highlighted.
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Lederer, Phys. Rev. Lett. 83, 4752 (1999).

[3] R. Sapienza, P. Costantino, D. Wiersma, M. Ghulinyan,
C. J. Oton, and L. Pavesi, Phys. Rev. Lett. 91, 263902
(2003).

[4] M. Ghulinyan, C. J. Oton, Z. Gaburro, L. Pavesi, C.
Toninelli, and D. S. Wiersma, Phys. Rev. Lett. 94,
127401 (2005).

[5] H. Trompeter, W. Krolikowski, D. N. Neshev, A. S.
Desyatnikov, A. A. Sukhorukov, Yu. S. Kivshar, T.
Pertsch, U. Peschel, and F. Lederer, Phys. Rev. Lett. 96,
053903 (2006).

[6] H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U.
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PRL 101, 193902 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

7 NOVEMBER 2008

193902-4


