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We present the Oð�Þ and Oð�3 ln�Þ corrections to the total decay width of orthopositronium in closed

analytic form, in terms of basic irrational numbers, which can be evaluated numerically to arbitrary

precision.
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Quantum electrodynamics (QED), the gauged quantum
field theory of the electromagnetic interaction, celebrated
ground-breaking successes in the twentieth century. In fact,
its multiloop predictions for the anomalous magnetic mo-
ments of the electron and the muon were found to agree
with highest-precision measurements within a few parts of
10�12 and 10�10, respectively.

Another ultrapure laboratory for high-precision tests of
QED is provided by positronium (Ps), the lightest known
atom, being the electromagnetic bound state of the electron
e� and the positron eþ, which was discovered in the year
1951 [1]. In fact, thanks to the smallness of the electron
mass m relative to typical hadronic mass scales, its theo-
retical description is not plagued by strong-interaction
uncertainties and its properties, such as decay widths and
energy levels, can be calculated perturbatively in nonrela-
tivistic QED (NRQED) [2], as expansions in Sommerfeld’s
fine-structure constant �, with very high precision.

Ps comes in two ground states, 1S0 parapositronium

(p-Ps) and 3S1 orthopositronium (o-Ps), which decay to
two and three photons, respectively. In this Letter, we are
concerned with the lifetime of o-Ps, which has been the
subject of a vast number of theoretical and experimental
investigations. Its first measurement [3] was performed
later in the year 1951 and agreed well with its lowest-order
(LO) prediction of 1949 [4]. Its first precision measure-
ment [5], of 1968, had to wait nine years to be compared
with the first complete one-loop calculation [6], which
came two decades after the analogous calculation for
p-Ps [7], which was considerably simpler owing to the
two-body final state. In the year 1987, the Ann Arbor group
[8] published a measurement that exceeded the best theo-
retical prediction available then by more than ten experi-
mental standard deviations. This so-called o-Ps lifetime
puzzle triggered an avalanche of both experimental and
theoretical activities, which eventually resulted in what
now appears to be the resolution of this puzzle. In fact,
the 2003 measurements at Ann Arbor [9] and Tokyo [10],

�ðAnn ArborÞ ¼ 7:0404ð10 statÞð8 systÞ�s�1;

�ðTokyoÞ ¼ 7:0396ð12 statÞð11 systÞ�s�1;
(1)

agree with each other and with the present theoretical

prediction,

�ðtheoryÞ ¼ 7:039 979ð11Þ �s�1: (2)

The latter is evaluated from
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where [4]

�0 ¼ 2

9
ð�2 � 9Þm�6

�
(4)

is the LO result. The leading logarithmically enhanced
Oð�2 ln�Þ and Oð�3ln2�Þ terms were found in
Refs. [11,12] and Ref. [13], respectively. The coefficients
A ¼ �10:286 606ð10Þ [6,11,14–16], B ¼ 45:06ð26Þ [15],
and C ¼ �5:517 024 55ð23Þ [17] are only available in
numerical form so far. Comprehensive reviews of the
present experimental and theoretical status of o-Ps may
be found in Ref. [18].
Given the fundamental importance of Ps for atomic and

particle physics, it is desirable to complete our knowledge
of the QED prediction in Eq. (3). Since the theoretical
uncertainty is presently dominated by the errors in the
numerical evaluations of the coefficients A, B, and C, it
is an urgent task to find them in analytical form, in terms of
irrational numbers, which can be evaluated with arbitrary
precision. In this Letter, this is achieved for A and C. The
case of B is beyond the scope of presently available tech-
nology, since it involves two-loop five-point functions to
be integrated over a three-body phase space. The quest for
an analytic expression for A is a topic of old vintage: about
25 years ago, some of the simpler contributions to A, due to
self-energy and outer and inner vertex corrections, were
obtained analytically [19], but further progress then soon
came to a grinding halt. The sustained endeavor of the
community to improve the numerical accuracy of A
[6,11,14–16] is now finally brought to a termination. An
analytic expression for C is then simply obtained from that
for A through the relationship [17]
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C ¼ A

3
� 229

30
þ 8 ln2; (5)

which may be understood qualitatively by observing that
the Oð�3 ln�Þ correction in Eq. (3) receives a contribution
from the interference of the relativistic Oð�Þ term from
hard scale with nonrelativisticOð�2 ln�Þ terms from softer
scales.

The Oð�Þ contribution in Eq. (3), �1 ¼ �0A�=�, is due
to the Feynman diagrams where a virtual photon is at-
tached in all possible ways to the tree-level diagrams,
with three real photons linked to an open electron line,
and the electron box diagrams with an eþe� annihilation
vertex connected to one of the photons being virtual (see
Fig. 1). Taking the interference with the tree-level dia-
grams, imposing eþe� threshold kinematics, and perform-
ing the loop and angular integrations, one obtains the two-
dimensional integral representation [16]

�1 ¼ m�7

36�2

Z 1

0

dx1
x1

dx2
x2

dx3
x3

�ð2� x1 � x2 � x3Þ

� ½Fðx1; x3Þ þ perm:�; (6)

where xi, with 0 � xi � 1, is the energy of photon i in the
o-Ps rest frame normalized by its maximum value, the
delta function ensures energy conservation, and perm.
stands for the other five permutations of x1, x2, x3. The
function Fðx1; x3Þ is given by

Fðx1; x3Þ ¼ g0ðx1; x3Þ þ
X7
i¼1

giðx1; x3Þhiðx1; x3Þ; (7)

where gi are ratios of polynomials, which are listed in
Eqs. (A5a)–(A5h) of Ref. [16], and

h1ðx1Þ ¼ lnð2x1Þ; h2ðx1Þ ¼
ffiffiffiffiffi
x1
�x1

s
�1;

h3ðx1Þ ¼ 1

2x1
½�2 � Li2ð1� 2x1Þ�;

h4ðx1Þ ¼ 1

4x1
½3�2 � 2�21�; h5ðx1Þ ¼ 1

2�x1
�21;

h6ðx1; x3Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1 �x1x3 �x3

p ½Li2ðrþA ; ��1Þ � Li2ðr�A ; ��1Þ�;

h7ðx1; x3Þ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s �
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p
:

(9)

Here, �2 ¼ �2=6 and

Li 2ðr; �Þ ¼ � 1

2

Z 1

0

dt

t
lnð1� 2rt cos�þ r2t2Þ (10)

is the real part of the dilogarithm [see line below Eq. (21)]
of complex argument z ¼ rei� [20]. Since we are dealing
here with a single-scale problem, Eq. (6) yields just one
number.
Although Bose symmetry is manifest in Eq. (6), its

evaluation is complicated by the fact that, for a given order
of integration, individual permutations yield divergent in-
tegrals, which have to cancel in their combination. In order
to avoid such a proliferation of terms, we introduce a
regularization parameter, �, in such a way that the sym-
metry unter xi $ xj for any pair i � j is retained. In this

way, Eq. (6) collapses to

�1 ¼ m�7

6�2

Z 1��

2�
dx1

Z 1��

1�x1þ�

dx2
x1x2x3

Fðx1; x3Þ; (11)

where x3 ¼ 2� x1 � x2. Note that we may now exploit the
freedom to choose any pair of variables xi and xj ði � jÞ as
the arguments of F and as the integration variables.
The analytical integration of Eq. (11) is rather tedious

and requires the use of some special techniques. For lack
of space, we can only outline here a few examples.
Specifically, we consider the last two functions of
Eq. (8), which are most complicated. Using Eq. (10) and
after some manipulations, we obtain the following integral
representation for h7ðx1; x3Þ:

FIG. 1. Feynman diagrams contributing to the total decay
width of o-Ps at Oð�Þ. Self-energy diagrams are not shown.
Dashed and solid lines represent photons and electrons, respec-
tively.
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h7ðx1; x3Þ ¼ � 1

4

Z 1

0

dtffiffi
t

p ðx1x3 � �x1 �x3tÞ
�

�
ln
�x1x3
x1 �x3

þ 2 lnðx3 þ �x3tÞ � lnt

�
: (12)

Exploiting the x1 $ x3 symmetry of the coefficient
g7ðx1; x3Þ multiplying h7ðx1; x3Þ, this can be simplified as

h7ðx1;x3Þ¼�1

4

Z 1

0

dtffiffi
t

p ðx1x3� �x1 �x3tÞ
½2lnðx3þ �x3tÞ� lnt�:

(13)

At this point, it is useful to change the order of integrations.
Observing that the logarithmic terms in Eq. (13) are x1
independent, we first integrate over x1 (for a similar ap-
proach, see Ref. [21]). In order to avoid the appearance of
complicated functions in the intermediate results, the in-
tegration over t in Eq. (13) is performed last.

Analogously, h6ðx1; x3Þ can be rewritten as

h6ðx1; x3Þ ¼ � 1

2

Z 1

0

dtffiffi
t

p ð �x1x3 � x1 �x3tÞ
½lnx1 � lnx3

þ lnðx3 þ �x3tÞ�; (14)

in which the part proportional to lnx1 and the complemen-
tary part are first integrated over x3 and x1, respectively.
The t integration is again performed last.

Let us now consider a typical integral that arises upon
the first integration:

I ¼
Z 1

0

dt

t

Z 1

0

dx

x
ln½1� 4tð1� tÞð1� xÞ� lnð1� xÞ:

(15)

Direct integration over t or x would lead to rather compli-
cated functions in the remaining variable. Instead, we
Taylor expand the first logarithm using lnð1� xÞ ¼
�P1

n¼1 x
n=n to obtain

I ¼ � X1
n¼1

4n

n

Z 1

0

dt

t
½tð1� tÞ�n

Z 1

0

dx

x
ð1� xÞn lnð1� xÞ:

(16)

Now the two integrals are separated and can be solved in
terms of Euler’s Gamma function, �ðxÞ ¼ R1

0 dte�ttx�1.

Using

Z 1

0

dx

x
ð1� xÞn lnð1� xÞ ¼ �c 0ðnþ 1Þ; (17)

where c ðxÞ ¼ d ln�ðxÞ=dx is the digamma function, we
finally have

I ¼ X1
n¼1

4n

2n

�2ðnÞ
�ð2nÞ c

0ðnþ 1Þ: (18)

Another class of typical integrals yields sums involving
digamma functions of half-integer arguments, e.g.

J ¼
Z 1

0

dt

t

Z 1

0
dx

ln½1þ 4tð1� tÞð1� xÞ� lnð1� xÞ
x� 2

¼ X1
n¼1

ð�4Þn
8n

�2ðnÞ
�ð2nÞ

�
c 0

�
nþ 2

2

�
� c 0

�
nþ 1

2

��
: (19)

I and J belong to the class of so-called inverse central
binomial sums [22,23], and methods for their summation
are elaborated in Ref. [23]. With their help, I and J can be
expressed in terms of known irrational constants, as

I ¼ �4�2l
2
2 �

l42
3
� 8Li4

�
1

2

�
þ 17

2
�4;

J ¼ � 3

2
�2l

2
2 þ

l42
4
� 3�2l2lr þ l22l

2
r þ 11

12
l2l

3
r

þ 47

288
l4r þ 4l2lrLi2ðrÞ þ 7

6
l2rLi2ðrÞ � 6l2Li3ð�rÞ

� 2lrLi3ð�rÞ þ 5l2Li3ðrÞ þ 4

3
lrLi3ðrÞ þ 6Li4

�
1

2

�

þ 4Li4ð�rÞ � 5Li4ðrÞ � 13

3
lrS1;2ðrÞ þ 2

3
S1;2ðr2Þ

� 4S2;2ð�rÞ þ 5S2;2ðrÞ þ �3l2 þ 19

6
�3lr; (20)

where r ¼ ð ffiffiffi
2

p � 1Þ=ð ffiffiffi
2

p þ 1Þ, lx ¼ lnx,

Sn;pðxÞ ¼ ð�1Þnþp�1

ðn� 1Þ!p!
Z 1

0

dt

t
lnn�1tlnpð1� txÞ (21)

is the generalized poly-logarithm, LinðxÞ ¼ Sn�1;1ðxÞ is the
poly-logarithm of order n, and �n ¼ �ðnÞ ¼ Linð1Þ, with
�ðxÞ being Riemann’s zeta function [20,24].
Unfortunately, not all integrals can be computed so

straightforwardly. In more complicated cases, the integra-
tions are not separated after expansion into infinite series.
We then end up with nested series that cannot be summed
analytically with known algorithms, or just with one-
dimensional integrals over complicated, but smooth func-
tions. However, these can be evaluated numerically to a
precision sufficiently high for an unambiguous application
of the PSLQ algorithm [25], which allows one to recon-
struct the representation of a numerical result known to
very high precision in terms of a linear combination of a set
of irrational constants with rational coefficients, if that set
is known beforehand. In fact, the experience gained with
the explicit solution of the simpler integrals already allows
us to exhaust the relevant sets, so that no guesswork is
necessary. In order for PSLQ to work reliably, which may
be monitored through a specific confidence parameter,
knowledge of the individual integrals up to typically 150
decimal figures is sufficient, while we generally achieve
over 400 decimal figures. Once an analytical result is
found, each additional decimal figure beyond the ones
used as input in the first successful run of PSLQ provides
a highly nontrivial check. The true analytical result can
thus be safely established beyond any doubt.
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After a laborious calculation, we obtain as the sum of several thousand individual integrals

2

9
ð�2�9ÞA¼56

27
�901

216
�2�11303

192
�4þ19
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l2�2701
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4
Li4ðrÞþ63

4
S2;2ðrÞþ11449

432
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�91

6
�3l2�35
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�3lrþ 1ffiffiffi
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�
49

2
�2lr� 7

72
l3r�35
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lrLi2ðrÞþ35

6
Li3ðrÞ�175

3
S1;2ðrÞþ14

3
S1;2ðr2Þþ119

3
�3

�
: (22)

The terms proportional to 1=
ffiffiffi
2

p
, whose appearance is

unexpected at first sight [19], originate from the summands
labeled i ¼ 2; 6; 7 in Eq. (7) and were all found by direct
integration.

From Eqs. (22) and (5), A and C can be numerically
evaluated with arbitrary precision,

A ¼ �10:286 614 808 628 262 240 150 169 210 991 . . . ;

C ¼ �5:517 027 491 729 858 271 378 866 098 665 . . . :

(23)

These numbers agree with the best existing numerical
evaluations [15,16] within the quoted errors.

In conclusion, we obtained the Oð�Þ and Oð�3 ln�Þ
corrections to the total decay width of o-Ps, i.e., the
coefficients A and C in Eq. (3), respectively, in closed
analytic form. Another important result is the appearance
of new irrational constants in Eq. (22). These constants
enlarge the class of the known constants in single-scale
problems. The constant B in Eq. (3) still remains analyti-
cally unknown.
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