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An Abelian gauge symmetry can be spontaneously broken near a black hole horizon in anti–de Sitter

space using a condensate of non-Abelian gauge fields. A second order phase transition is shown to

separate Reissner–Nordström–anti–de Sitter solutions from a family of symmetry-breaking solutions

which preserve a diagonal combination of gauge invariance and spatial rotational invariance.
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Introduction.—Black holes and black branes usually
prefer to be as symmetrical as possible. For example, the
Schwarzschild black hole in four dimensions has spherical
symmetry SOð3Þ, and it is stable against perturbations that
break this symmetry [1].

There are exceptions to the rule that horizons prefer to
be symmetrical, and they are associated with interesting
physics. For example, the Gregory-Laflamme instability
[2] of horizons with a translational symmetry is essentially
a spinodal instability [3]. In [4], I studied ways in which
black hole horizons could spontaneously break global or
gauge symmetries of gravity coupled to an appropriate
matter Lagrangian. But the matter Lagrangians in question
were fairly complicated, with several parameters and, typi-
cally, nonrenormalizable interactions.

In [5,6], the search for simpler examples of spontaneous
symmetry breaking near black hole horizons intersected
with attempts [7–10] to find analogs in the gauge-string
duality [11–13] of phenomena associated with supercon-
ductors. Coupling the Abelian Higgs model to gravity plus
a negative cosmological constant leads to black hole solu-
tions where a condensate of the complex scalar near the
horizon spontaneously breaks the Abelian gauge sym-
metry. Insofar as such symmetry breaking signals super-
conductivity, such solutions can be regarded as supercon-
ducting black holes. The black hole metrics are asymptoti-
cally anti–de Sitter, and their dual descriptions involve an
expectation value of a scalar operator which spontaneously
breaks a global Uð1Þ symmetry. If this symmetry is weakly
gauged, then superconducting black holes translate to
superconducting states in a dual conformal field theory.
If the symmetry is not gauged in the boundary theory, then
one should think of the dual to a superconducting black
hole as a form of superfluidity.

Unpublished numerical calculations based on the model
proposed in [5] indicate that superconducting horizons are
thermodynamically preferred below some nonzero critical
temperature. Further evidence in this direction appeared in
[6] in a strong coupling limit. But there are enough pa-
rameters in the Lagrangians considered in [4–6] that it is
challenging to characterize the degree of universality or
robustness of such numerical results. I will therefore con-

sider an analogous phenomenon in a theory whose
Lagrangian is mostly determined by symmetry principles:
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is the field strength of an SUð2Þ gauge field. Here �abc is
the totally antisymmetric tensor with �123 ¼ 1.
The gravitational coupling � enters the action (1) only as

a prefactor, so it cancels out of the equations of motion.
Thus, the only dimensionless parameter in the equations of
motion following from (1) is gL.
It is convenient to represent the gauge field as a matrix-

valued one-form:

A ¼ Aa
��

adx�; (4)

where �a ¼ �a=2i, so that

½�a; �b� ¼ �abc�c: (5)

(By �a I mean the usual Pauli matrices.) I will restrict
attention to the following ansatz:

ds2 ¼ e2að�hdt2 þ dx21 þ dx22Þ þ
dr2

e2ah
; (6a)

A ¼ ��3dtþ wð�1dx1 þ �2dx2Þ; (6b)

where a, h, �, and w are functions only of r. The gauge
field (6b) is a slight simplification of the ansatz considered
in [14,15]. A substantial literature has grown up around
similar solutions of Einstein-Yang-Mills theory; see
[16,17] for reviews.
The electrostatic potential � must vanish at the horizon

for A to be well defined as a one-form, but I do not require
it to vanish at infinity; thus the black hole can carry charge
under the Uð1Þ gauge symmetry generated by �3.
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The condensate wð�1dx1 þ �2dx2Þ breaks the Uð1Þ ro-
tation symmetry in the x1-x2 plane as well as the Uð1Þ
gauge symmetry generated by �3, but it preserves a combi-
nation of the two. A less symmetric ansatz could be con-
sidered, where the �1dx1 and �2dx2 components of A have
different coefficient functions. This might result in a lower
free energy, but it is significantly harder to study because
the metric would probably not have g11 ¼ g22. In the
interest of demonstrating spontaneous symmetry breaking
in the cleanest possible finite-temperature setting, I will
stick with the ansatz (6).

I will require w to be normalizable in the sense of
making a finite contribution to the norm [18]

jjAjj2 �
Z 1

rH

dr
ffiffiffiffiffiffiffi�g

p
g��Aa

�A
a
�; (7)

where rH is the location of the horizon. Normalizability of
w is what it will mean for the condensate to form ‘‘near’’
the horizon. It is an appropriate requirement in the context
of studying spontaneous symmetry breaking. Heuristically,
solutions with normalizable w are the ones which can be
reached, at least asymptotically, through real-time evolu-
tion starting from some solution with w close to 0—pro-
vided constraints like horizon area increase are satisfied.

In summary: The only conserved quantities associated
with the black hole should be its mass density and its
electric �3 charge density, and w, if it is nonzero, is a
condensate whose presence spontaneously breaks Uð1Þ of
spatial rotations times Uð1Þ of �3 into a diagonal subgroup.
The aim of this Letter is to find out when this spontaneous
symmetry breaking occurs.

Symmetry-breaking solutions.—Plugging (6a) and (6b)
into the equations of motion following from (2) results in
four second-order equations of motion:
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together with a zero-energy constraint,
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The simplest solution of these equations with� � 0 is the
Reissner-Nordström black hole in anti–de Sitter space
(hereafter RNAdS). The RNAdS solution has w ¼ 0. Its
explicit form can be found, for example, in [19]. The

strategy pursued below is to numerically construct solu-
tions with nonzero, normalizable w and compare their free
energy with the RNAdS solution with the same tempera-
ture and charge density.
A solution to (8) and (9) with a regular horizon at r ¼ 0

admits a near-horizon series expansion

a¼ a0 þ a1rþa2r
2 þ . . . h¼ h1rþ h2r

2 þ . . .

�¼�1rþ�2r
2 þ . . . w¼w0 þw1rþw2r

2 þ . . . :

(10)

Near the conformal boundary of anti–de Sitter space, with
w normalizable, one finds the expansions

a ¼ log
r

L
þ �0 þ . . . ;
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�3a þH4e

�4a þ . . . ;
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One may compute the energy density, entropy density,
temperature, chemical potential, and charge density, as
well as an order parameter J, to be discussed further below,
as follows:
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All dependence on � can be removed by defining

X̂ ¼ �2

ð2�Þ3L2
X; (13)

where X is an extensive thermodynamic density such as �,
s, 	, J, or the long f ¼ �� Ts. The factors of 2� are
included for later convenience.
Any relation among thermodynamic quantities must be

expressible in terms of dimensionless ratios. For example,
the RNAdS solutions have

�̂

ŝ3=2
¼ 1þ �2	̂2

ŝ2
: (14)

Of special interest is the dimensionless ratio �f̂=	̂3=2,
where �f is the difference in the free energy density,
between a symmetry-breaking solution and the RNAdS
solution with the same T and 	. �f < 0 means that the
symmetry-breaking solution is preferred.
Whenw � 0, one may ask what fraction q of the electric

charge density is carried by the non-Abelian gauge bosons
outside the horizon. The ratio of the flux of the �3 electric
field through the horizon to the flux at infinity is 1� q.
Therefore,

q ¼ 1þ Le2a0
ffiffiffiffiffiffi
H0

p �1

p1

: (15)
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In the dual field theory, q ¼ 	s=ð	s þ 	nÞ, where 	n and
	s are the charge densities in the normal and superfluid
components, respectively.

The dual field theory has currents Jam satisfying an SUð2Þ
current algebra, where m runs over the t and xi directions.
The symmetry breaking that arises from nonzero w corre-
sponds to expectation values

hJai i / J
a
i ; (16)

where i runs over the values 1, 2. The tensor 
a
i exhibits the

locking of a spatialUð1Þ and a gaugeUð1Þ. (16) describes a
form of long-range order which infrared fluctuations
probably destroy; however, fluctuations are suppressed in

the supergravity approximation, where � � L [20]. I will
therefore ignore them.
Summary of results.—Here are the main results of my

investigation of black hole solutions of the form (6).
(a) There is a two-parameter family of black hole solu-

tions with positive, normalizablew. A convenient choice of
parameters is gL and T=

ffiffiffiffî
	

p
.

(b) These superconducting black holes exist below a
critical temperature Tc. Tc=

ffiffiffiffî
	

p
is a function only of gL.

Tc appears to go to zero at gL � 0:8. Tc is the temperature
below which the RNAdS solutions exhibit an instability
toward forming a condensate of the form (6b). This insta-
bility is reminiscent of the Nielsen-Olsen instability [21],
but distinct because it is caused by color-electric fields and
happens equally for charged scalars.

FIG. 1 (color). (a) The phase diagram. Each point corresponds to a numerically constructed black hole solution. (b) Ĵ=	̂ as a function
of T=Tc. (c) q as a function of T=Tc. (d) �f̂=	̂

3=2 as a function of T=Tc.
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(c) The superconducting black holes have lower free
energy than RNAdS black holes with the same temperature
and charge density.

(d) The transition at Tc is second order, with mean field

theory exponents: q / t, Ĵ=	̂ / ffiffi
t

p
, and �f̂=	̂3=2 / �t2,

where t ¼ 1� T=Tc.

(e) For gL * 3:5, dimensionless quantities such as Ĵ=	̂,

q, and �f̂=	̂3=2 exhibit nearly universal behavior as a
function of T=Tc from T ¼ Tc down at least to 1

2Tc. This

universality is related to a large g limit where the
back reaction of the gauge field on the metric can be
neglected.

The evidence for these claims comes from numerical
solutions to the differential equations (8) for various
choices of parameters. More specifically: to construct a
solution, I started by specifying numerical values for g, L,
a0, h1, �1, and w0. Higher order terms in the series
expansions (10) can be deduced in terms of these
quantities. I initialized a numerical integration tool
(MATHEMATICA’s NDSolve) near r ¼ 0 using the series
expansions (10). A shooting strategy was then employed
(usually based on varying L with gL held fixed) to imple-
ment the constraint of normalizability on w. The shooting
algorithm was designed to work well near Tc. In practice, it
worked well for T > Tc=2.

Fits to the expansions (11) allowed me to extract the
thermodynamic quantities discussed above. I restricted
attention to solutions with w everywhere positive as well
as normalizable. Solutions exist in which w has nodes, but
they are probably always thermodynamically disfavored
because spatial oscillations in w increase energy density.
Figure 1 summarizes the thermodynamic properties of the
approximately 1600 superconducting black hole solutions
that I constructed.

Among solutions preserving the diagonal Uð1Þ gener-
ated by simultaneous gauge and spatial rotations, I believe
that the ones I have constructed are thermodynamically
preferred. However, investigations subsequent to the work
reported here [22,23] suggest that solutions with less re-
sidual symmetry are preferred over the ones described
herein, at least for large gauge coupling.

Because the two-derivative Lagrangian (2) is mostly
determined by symmetry principles, the black holes con-
structed in this Letter provide a particularly clean example
of a black hole phase transition. The transition evokes
aspects of superconductivity, sharing, in particular, the
crucial feature of a spontaneously broken Abelian gauge
symmetry. The condensate (16) carries angular momen-
tum, hinting that some analogy with non-BCS-like super-
conductors might be possible. Such analogies so far have
mostly focused on the pseudogap state [7–10], where phase

fluctuations destroy superconductivity. Although the
underlying degrees of freedom of duals to AdS4 vacua
are typically large N gauge theories—seemingly distant
from semirealistic models of superconductors—one might
hope that dynamics related to the global symmetries of the
Hubbard model and its relatives can be captured, to some
extent, by non-Abelian gauge fields in AdS4.
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