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We study the effect of an asymmetry on the transport properties of an active Brownian particle. We

demonstrate the existence of a critical force or, more generally, of a critical asymmetry that separates

parameter regimes of giant diffusion from those with reliable directed transport. We derive a condition for

the critical asymmetry by means of an exact expression for the diffusion coefficient and by a simplified

discrete picture. A critical asymmetry, as predicted by the simple model, is also found in a detailed model

of coupled molecular motors displaying bidirectional motion.
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Self-propelled motion is one of the key features of life
appearing on levels ranging from flocks of animals to
single cell motility and intracellular transport by molecular
motors [1]. One class of phenomenological motility mod-
els comprises active Brownian particles (ABP) that can
describe non-Maxwellian velocity distributions [2],
swarming behavior [3], and other phenomena [4].

Already the active Brownian motion in one dimension
has remarkable stochastic features and is relevant for the
dynamics of coupled molecular motors that walk on fila-
ments like microtubuli carrying out various tasks in the
cell. One striking collective effect arising in assemblies of
coupled motors is the bidirectionality of motion [5] that
can be qualitatively captured by ABP models [6] (bidir-
ectionality can also arise from the interaction of several
types of motors, e.g. [7,8]). Mean drift and effective dif-
fusion around this drift are the most important character-
istics of such motor assemblies and determine their
respective function in the cell. As we show in this Letter,
important conclusions about the diffusive behavior of
coupled molecular motors can be drawn from the much
simpler ABP dynamics.

An ABP obeys the nonlinear Langevin equation

_x ¼ v; _v ¼ fðvÞ þ gðvÞ�ðtÞ; (1)

where �ðtÞ is Gaussian white noise with h�ðtÞ�ðt0Þi ¼
2Q�ðt� t0Þ (Q sets the overall noise intensity). Essential
for an ABP is an anomalous force-velocity relation with a
region of negative friction at small speed jvj (fðvÞ=v > 0).
Generally, an active particle obeying Eq. (1) possesses a
mean velocity hvi ¼ limt!1hxðtÞ � xð0Þi=t and undergoes
a diffusive spread around this mean motion which is char-
acterized by an effective diffusion coefficient Deff ¼
limt!1½hx2ðtÞi�hxðtÞi2�=ð2tÞ. In previous studies [4,9,10]
the diffusive dynamics of ABPs has been mainly consid-
ered for symmetric functions foddðvÞ, gevenðvÞ under which
the ABP performs pure diffusion with hvi ¼ 0. Under the
above conditions, the velocity dynamics then formally
corresponds to an overdamped Brownian motion vðtÞ sub-
ject to a potential force �dUevenðvÞ=dv ¼ foddðvÞ=
g2evenðvÞ where the potential is bistable and symmetric as

illustrated in Fig. 1(a) (dotted line). This symmetric bista-
bility implies a bidirectional motion [see, e.g., dotted line
in Fig. 1(b)] at weak noise and a divergence of the ABP’s
diffusion coefficient in the limit of vanishing noise [9,10].
In this letter, we study the effect of an asymmetry on the

ABP’s diffusion in one spatial dimension. For the case of a
bias force breaking the symmetry, we show that the diver-
gence of the diffusion coefficient for vanishing noise is
removed if the bias F is beyond a critical value jFj>
jFcritj. This value separates asymmetry parameters which
yield giant diffusion from those which yield a reliable
transport of ABPs. A criterion for Fcrit can be found in
terms of the effective velocity potential or in terms of the
local extrema of the steady-state velocity histogram. We
furthermore demonstrate by extensive simulations that the
very same effect predicted by our theory occurs also in a
detailed model of coupled molecular motors.
Theory.—The first nontrivial feature of an asymmetric

system is a finite mean velocity [this drift can be seen in
Fig. 1(b), solid line] which can be calculated by standard
methods. Interpreting here and in the following Eq. (1) in
the sense of Ito, one can calculate from the corresponding
Fokker-Planck equation the steady-state density and from
the latter the stationary mean value

P0ðvÞ¼ e�UðvÞ=Q=g2ðvÞR1
�1d~ve�Uð~vÞ=Q=g2ð~vÞ ; hvi¼

Z 1

�1
dvPðvÞv:

(2)
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FIG. 1 (color online). The velocity potential (a) and sample
trajectories (b) of an ABP in the symmetric (dotted) and in the
asymmetric case (solid, F ¼ 0:085), respectively. In (b): simu-
lations of Eq. (5) with Q ¼ 0:05, F ¼ 0 (dotted) and F ¼ 0:02
(solid).
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The diffusion coefficient can be found from the integral of
the velocity autocorrelation function

Deff ¼
Z 1

0
d�hvðtÞvðtþ �Þi ¼ h�v2i�corr; (3)

which can be written as the product of the velocity’s
variance h�v2i and its correlation time �corr. The latter
can be calculated in terms of quadratures [11], yielding the
following exact expression for the diffusion coefficient:

Deff ¼
R1
�1 dxeUðxÞ=Q½Rx

�1 dy y�hvi
g2ðyÞ e

�UðyÞ=Q�2
Q
R1
�1 dve�UðvÞ=Q=g2ðvÞ : (4)

For a symmetric setup this reduces to the result in [10].
Diffusion of an active Brownian particle.—In the follow-

ing we are particularly interested in the behavior at small-
noise intensity Q. It is instructive to discuss the main
physics of the asymmetric system for a simple example
with additive noise (gðvÞ � 1) and a cubic function fðvÞ ¼
v� v3 þ F where the asymmetry is introduced by a bias
F. This can be written as

_x ¼ v; _v ¼ �dUðvÞ=dvþ �ðtÞ (5)

in terms of a biased velocity potential UðvÞ ¼ v4=4�
v2=2� Fv shown in Fig. 1(a) (solid line). This bistable
potential displays two force-dependent minima at v� and
vþ separated by a maximum at v0 with associated barriers
�U� ¼ Uðv0Þ �Uðv�Þ. Note that the system is symmet-
ric under inversion of x, v, and F from which we conclude
that hvðFÞi ¼ �hvð�FÞi and DeffðFÞ ¼ Deffð�FÞ.

At low noise (Q � �U�), the mean velocity [Fig. 2(a)]
corresponds roughly to the location of the deeper potential
minimum determined by the bias F. Around zero force
there is a jump in hvi; at finite force, the velocity varies
smoothly with F. The diffusion coefficient displays a more
surprising dependence on the force. Our numerical evalu-
ation of the quadrature result Eq. (4) as well as extensive
simulations of Eq. (5) shown in Fig. 2(b) reveal a critical
value of the force that separates values of F with different
small-noise behavior. For jFj< Fcrit (shaded region in
Fig. 2), the diffusion coefficient diverges for Q ! 0; for
F outside this range, the diffusion decreases to zero as
Deff / Q. We may distinguish the two cases as those of
incoherent (strongly diffusive) and coherent (reliable di-
rected) transport. Note that for F ¼ Fcrit, the diffusion
coefficient attains a moderate value which does not change
for Q ! 0.

A criterion for the critical asymmetry.—One might be
tempted to think that the critical force Fcrit equals Fmono

[vertical lines in Fig. 2(b)] at which the potential becomes
monostable. However, the value of the critical force is
much smaller than this value, i.e. Fcrit < Fmono.

The origin of the critical force becomes clear by con-
sidering separately the two factors h�v2i and �corr in Eq.
(3). For Q � �U�, we use a simple two-state theory in
which the velocity performs transitions between two dis-
crete states [12], specifically, from v� to v� with Kramers

rates r� ¼ !�j!0j=ð2�Þ exp½��U�=Q� (!2�;0 is the cur-

vature of the potential at v�;0). The variance in this ap-

proximation is h�v2i ¼ ðvþ � v�Þ2rþr�=ðrþ þ r�Þ2 and
approaches zero for Q ! 0 if F � 0. On the contrary, the
correlation time �corr ¼ 1=ðr� þ rþÞ diverges in the same
limit. In the regime of giant diffusion, the diverging corre-
lation prevails whereas for jFj> jFcritj the vanishing vari-
ance dominates. Right at the critical value Fcrit, the two
factors balance such that the product remains finite for
Q ! 0. Specifically, we find

Deff � 2�ðvþ � v�Þ!þ!�=j!0j
½!�e�ð2�U���UþÞ=ð3QÞ þ!þe�ð2�Uþ��U�Þ=ð3QÞ�3 ;

(6)

which can be also achieved by a saddle point approxima-
tion of the exact result Eq. (4). The approximation agrees
well with Eq. (4) for small to moderate forces [see dotted
lines in Fig. 2(b)] and, in particular, at the critical force.
Moreover, Eq. (6) provides us with a simple criterion for
the critical force in terms of the two potential barriers
�U�: the higher barrier is just twice the smaller barrier

�UþðFcritÞ ¼ 2�U�ðFcritÞ: (7)

This general condition does not change for a system with
multiplicative noise and a more general kind of asymmetry
as long as the effective potential is bistable and the asym-
metry controls the height of the potential barriers.
The relation for the critical asymmetry has a remarkable

consequence for the stationary probability density PðvÞ of
the velocity. For weak noise and F > 0, this density shows
two maxima of different height (PðvþÞ>Pðv�Þ) and a
minimum Pðv0Þ in between. If we consider the following
ratio of these extrema
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FIG. 2 (color online). Transport properties of active Brownian
particles with an asymmetry. Mean velocity (a) and diffusion
coefficient (b) vs bias for different noise levels Q. Exact result
Eq. (4) compared to numerical simulations of Eq. (5) (symbols)
and to the two-state theory Eq. (6) (dotted lines). Forces within
the shaded region (F 2 ð�Fcrit; FcritÞ with Fcrit � 0:0852) lead
to giant diffusion in the weak noise limit; outside this window,
reliable transport is observed. Panels (c)–(g) show the velocity
potentials at the forces as indicated.

PRL 101, 190603 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

7 NOVEMBER 2008

190603-2



RPðF;QÞ ¼ Pðv0ÞPðvþÞ=P2ðv�Þ (8)

and use the steady-state density in Eq. (2) and the condition
Eq. (7), we find at the critical asymmetry RPðFcrit; QÞ ¼
g2ðv0Þg2ðvþÞ=g4ðv�Þ; i.e., the ratio is independent of the
noise intensity Q.

Giant diffusion has been also reported for the passive
Brownian motion in a spatially periodic potential biased
with a threshold force [13]. Studies of this system revealed
a maximum of Deff vs bias force and discussed the depen-
dence of the threshold force on damping and the scaling of
the maximal diffusion with noise intensity. For the ABP
dynamics studied here, the threshold force is simply at zero
(F ¼ 0) and the maximal diffusion scales exponentially
with the inverse noise intensity [9,10]. Our main point here
is not the presence of this maximum but the existence of a
finite window of forces [determined by Eq. (7)] which lead
to giant diffusion of ABPs. Whether a similar window
exists for passive particles in a biased periodic potential
is an interesting but open question.

Diffusion of coupled molecular motors.—An ABP
model like Eq. (5) was suggested in [6] as a simplified
description of more detailed models of coupled molecular
motors in the limit of large but finite number of motors. For
motor assemblies, the dominance of either diffusion or
drift may determine their biological function in the cell.
Hence, it is an important question whether the critical
asymmetry observed above is also present in biophysically
detailed models of coupled molecular motors. To answer
this question, we consider in the following the model by
Badoual et al. [6] which captures many features of experi-
mental data from motility assays [5] (for other models of
coupled Brownian motors see [14]).

In the model (see Fig. 3),N molecular motors are rigidly
attached equidistantly with spacing q to a backbone. The
overdamped dynamics of the backbone reads

� _x ¼ F�XN

i¼1

ð�iðtÞ=NÞW 0
�i
ðxiÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT�=N

q
�ðtÞ; (9)

where � and F are the friction coefficient and external
force per motor. The backbone is subject to three forces:

(i) an external bias F; (ii) forces exerted by the filament
onto the single motors; (iii) thermal fluctuations �ðtÞ (for
simplicity, we set T ¼ 0). Noise is introduced by indepen-
dent switching of the motors between different conforma-
tional states in which the motor either interacts with the
filament [for �iðtÞ ¼ 1] or does not [for �iðtÞ ¼ 0]. The
interaction is given by a periodic and asymmetric (a so-
called ratchet) potential with period L and asymmetry
parameter a (the symmetric case corresponds to a ¼
L=2). Switchings from �iðtÞ ¼ 1 ! 0 occur with a
space-dependent switching rate r1ðxþ iqÞ only close to
the minima of the potential; the reverse rate r0 is spatially
homogeneous. For large N and the proper choice of a and
F, the backbone displays bidirectional motion and, con-
sequently, the velocity histogram becomes bimodal. The
stochastic period for which the assembly keeps one direc-
tion depends exponentially on the number of motors. Most
importantly in the following, the overall noise intensity
introduced by the independent switchings of the motors
scales like Q / 1=N [6].
Velocity and diffusion coefficient of the backbone for a

symmetric spatial potentialW1ðxÞwith a ¼ L=2 are shown
in Figs. 4(a) and 4(b), respectively. Both measures display
the same features as observed for the ABP diffusion above:

r0
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0 xaL d
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FIG. 3 (color online). Coupled molecular motors. Following
Ref. [6] and working in nondimensional units, we use a rate r1ðxÞ
which is r1¼500 in a region of width d¼0:2 centered at the po-
tential minima, otherwise r1ðxÞ ¼ 0. The rate r0 ¼ 40 is spa-
tially independent. Other parameters: W ¼ 1, L ¼ 1, � ¼ 0:01,
simulation time step �t ¼ 10�3; q is incommensurate with L.
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FIG. 4 (color online). Transport properties of an assembly of
molecular motors. Mean velocity (a) and diffusion coefficient (b)
for a symmetric spatial potential (a ¼ L=2) vs external force for
different numbers of motors as indicated. The inset shows the
ratio RP Eq. (8) vs the number of motors for three values of F
indicated by arrows in (b). Panels (c) and (d) show the mean
velocity and effective diffusion coefficient for an asymmetric
potential (a ¼ 0:4L); note that the range of forces has shifted to
negative values. Insets in (d): ratios RP measured at six values of
the force close to the critical values.
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between two critical values of the force �Fcrit < F < Fcrit

the diffusion increases by orders of magnitude upon an
increase of the motor number N (corresponding to a de-
crease of the effective noise intensity Q / 1=N). Beyond
this critical range, diffusion is reduced to small values. The
critical force is not noticed in the curves for the velocity
which varies smoothly with F. If the ratchet potential is
asymmetric [a ¼ 0:4L, see Figs. 4(c) and 4(d)], the back-
bone moves at zero external force reliably (with low dif-
fusion) into its preferred direction (determined by the
ratchet mechanism). Biasing the dynamics against this
direction (F < 0) we observe, however, again a critical
range at negative forces where the diffusion coefficient in-
creases rapidly upon increase of the number of motors.
Outside this range reliable transport is obtained as in the
symmetric case at large bias force. Note that the critical
values of the force as well as the diffusion coefficient at
these two values now differ. This is also expected in gen-
eral for an ABP with asymmetric functions fðvÞ and gðvÞ.

We have further verified that the stochastic mechanism
already seen in the ABP model underlies the critical values
of the force or, more generally, the combined asymmetry
resulting from the choices of a and F. Above, below, and
close to the critical asymmetry we have numerically de-
termined the velocity histograms for different values of N,
extracted their local extrema, and computed the ratio RP

defined in Eq. (8). If our picture of the mechanism at work
is correct, the ratio RP should be flat as a function ofN only
if the system is poised at the critical asymmetry. Indeed, in
agreement with this prediction, only under the latter con-
dition the dependence of RP on N is weak whereas for
other values, the ratio depends strongly on N [insets of
Figs. 4(b) and 4(d)]. Note that in the critical case, the ratio
is not equal to one as it would be for a system with effective
additive noise. This indicates that the system of coupled
molecular motors is described by Eq. (1) with a multi-
plicative noise.

Discussion.—To summarize, we have shown that an
active Brownian particle undergoes a qualitative change
of its weak noise behavior upon increasing an asymmetry
in its dynamics. We demonstrated for a simple example
with a constant bias F the existence of a finite window of
forces jFj< Fcrit for which the ABP shows giant diffusion
similar to its behavior in the symmetric case (this strong
diffusion may in a finite system completely overshadow the
effect of a finite mean velocity). For forces jFj> Fcrit,
diffusion is (in particular, at weak noise) drastically re-
duced and the motion is dominated by the drift (reliable
transport). The critical value Fcrit can be understood as a
compromise between a vanishing variance and a diverging
correlation time. The product of these two factors is finite
in the limit of vanishing noise if the effective velocity
potential obeys a simple condition: the barrier for transi-
tions from the more likely velocity should be twice as large
as the barrier seen from the less likely velocity state. We
also could formulate this condition in terms of extremal

values of the velocity histogram. This condition could be
also assessed in experimental systems in which the overall
noise level can be controlled.
We also observed the critical range in the asymmetry in

a model of coupled molecular motors, for which a corre-
spondence to an active Brownian particle model had been
previously suggested [6]. In accordance with our predic-
tions, the critical force as well as its corresponding ratio
RPðFcritÞ do not depend on the number of motors which
determines the effective noise level in this system. Our
results also bear possibly relevance for the biophysics of
coupled molecular motors. These molecular machines
have diverse functions in the cell: force generation and
generation of rhythmic behavior [15], directed transport of
cargo [16], and active diffusive transport [8]. Regarding the
latter two tasks, we have shown that changing the asym-
metry by external forces or intrinsic interactions (parame-
ter a of the ratchet model), the assembly of molecular
motors can display either (i) reliable directed transport of
cargo needed in a specific place of the cell or (ii) a huge
diffusion which may serve to distribute products generated
in one place but needed in many different places all over
the cell.
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