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We study the relaxation process in a simple glass former—the Kob-Andersen lattice gas model. We

show that, for this model, structural relaxation is due to slow percolation of regions of cooperatively

moving particles, which leads to heterogeneous dynamics of the system. We find that the size distribution

of these regions is given by a power law and that their formation is encoded in the initial structure of the

particles, with the memory of initial configuration increasingly retained with increasing density.
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Glass-forming systems are disordered materials whose
relaxation dynamics become extremely slow on decreasing
the temperature or increasing the density. Despite intensive
research in this domain, a proper understanding of these
materials is still missing [1,2]. The observation, in experi-
ments and simulations, of spatio-temporal dynamical het-
erogeneity in glass formers has been an important step
forward in elucidating the mechanism for relaxation pro-
cesses, and currently, considerable research is being fo-
cused on understanding the lifetime and spatial extent of
these dynamical heterogeneities.

A key question in this domain is the conundrum regard-
ing whether or not there is a causal link between structural
properties of glass-forming systems and their dynamical
behavior. It has recently been shown [3] that the spatial
heterogeneity in the propensity of particles to move is
correlated with the local environment of the particles,
characterized by the local Debye-Waller factor. However,
this influence seems to exist only over time scales which
are much less than the structural relaxation time [4]. It was
also observed that structural properties are indeed corre-
lated with collective dynamical fluctuations, but no quan-
titative analysis was made [5]. More recently, it has also
been reported [6] that for a supercooled liquid configura-
tion, its localized low-frequency normal modes correlate
with the irreversible structural reorganization of its con-
stituent particles.

In recent times, extensive studies of kinetically con-
strained models (KCMs) [7], which are one of the simplest
models showing glassy dynamics, have been carried out in
order to understand their relaxation process. These models,
which are motivated by the hypothesis that the slow dy-
namics in glass formers is only due to geometrical con-
straints, show heterogeneous dynamics similar to real glass
formers [8]. In this Letter, we study one such KCM—the
Kob-Andersen (KA) lattice gas [9] in which particles are
allowed to move on a lattice following certain dynamical
rules and which at high densities shows signatures of
apparently diverging relaxation times [9–11]. Recently it
has been proven analytically [12] and numerically [13] that

for this model there exists no dynamical transition at finite
density, �, and it was argued [12] that eventually, due to the
presence of migrating macro-vacancies, the system re-
laxes, albeit extremely slowly. However, from a practical
point of view this model still is a good model for a glass-
forming systems. Using Monte Carlo simulations we show
that its structural relaxation is related to the growth of
mobile regions and that this process quickly slows down
with increasing �, resulting in the observed slow dynamics.
We also demonstrate that the formation of the mobile
regions is directly related to structural properties of the
system.
We have studied the 3D version of the KA model: N

particles populate a cubic lattice of size L3 with the con-
straint that a lattice site can be occupied by only one
particle. All possible configurations have the same energy
and thus the same Boltzmann weight. The imposed sto-
chastic dynamics consists of the following process: A
randomly selected particle can move to any one of the
neighboring empty lattice site provided it has m or fewer
occupied nearest neighbor sites and that the target empty
site has mþ 1 or fewer occupied nearest neighbor sites. A
choice of m ¼ 3 results in glassy dynamics for this model
[9]. For efficient sampling of the configuration space at
high � ¼ N=L3, we have carried out event-driven
Monte Carlo [9] simulations of the model. Using periodic
boundary conditions, we have investigated system sizes
L ¼ 20, 30, and 50, which avoid finite-size effects, with
densities spanning from � ¼ 0:65 to � ¼ 0:89.
Experiments and simulations in which the motion of

single particles were tracked have helped to demonstrate
the existence of heterogeneous dynamics in glassy systems
[2]. For example, by measuring the self part of the
van Hove function Gsðr; tÞ, i.e., the distribution of particle
displacements [Gsðr; tÞ ¼ h�ðr� jriðtÞ � rið0ÞjÞi, where
riðtÞ denotes the position of particle i at time t], it has
been possible to demonstrate that the particles have vary-
ing mobilities. In Fig. 1, we show Gsðr; tÞ for different
times t, measured in units of Monte Carlo steps, at � ¼
0:87. For diffusive motion, Gsðr; tÞ is a Gaussian and we
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observe that for the KA model, like other glass formers
[14], this Gaussian behavior is only observed at times (t �
5� 108) that are much larger than the structural relaxation
time �� (defined as the time at which the self-intermediate
scattering function has decayed to 1=e, which at � ¼ 0:87
is �� � 1:8� 107). At intermediate times, we see that
Gsðr; tÞ has an exponential tail, a signature of the presence
of rare events in the dynamics of the particles, similar to
other glassy systems [15]. Thus we can conclude that while
most of the particles remain frozen at their initial positions
[resulting in large values for Gð0; tÞ], there is a small
population which is extremely mobile; i.e., the system
has a very heterogeneous dynamics.

By tracking the mobile particles, i.e., particles which
contribute to the tail of Gsðr; tÞ, we see that at short times
they explore a compact region (a ‘‘blob’’) around their
initial locations. With increasing t these blobs slowly ex-
pand and coalesce with other blobs to form a labyrinthine
structure. This structure allows particles, which were hith-
erto confined to one blob, to travel longer distances. In
Fig. 2 we have plotted the lattice sites (marked by light and
dark spheres) visited by two such mobile particles at � ¼
0:88 and t ¼ 107 (at this density, �� � 4:4� 108). It can
be clearly seen that the dynamics is spatially heteroge-
neous since the trajectories consist of connected blobs.
Note that initially each blob is a region of cooperative
motion since all the particles which occupy these lattice
points are found to be mobile. As the backbone is formed,
particles from one blob begin to explore other blobs. The
relaxation of the system thus happens with the slow growth
of this backbone, within which the particles can move
relatively quickly. This is demonstrated in Fig. 2: indeed,
the two trajectories overlap even though they originate
from two different lattice sites which initially did not
belong to the same blob.

Further insight into the spatial nature of the relaxation
process can be obtained by observing the so-called ‘‘mo-
bility regions’’ [16–18]: A lattice site is defined to be an
‘‘active site’’ if either a particle or a vacancy has moved out
of it during the time of observation and the collection of

these sites constitute the mobility regions. Earlier studies
of KCMs have shown that the active sites tend to cluster
and act as seeds for subsequent mobility [16–18] and that it
is possible to extract from the mobility regions a length
scale which increases with density [16]. In Fig. 2 we have
also included the location of the active sites, and we can see
that these lattice sites are indeed clustered in space
(marked by the pale blobby shapes) and have a labyrinthine
structure. It gives us an idea of the structure of pathways, at
high densities, available to the mobile particles for explo-
ration. We can clearly see that, on this time scale, the two
mobile particles have only explored a part of the available
volume and that the geometry of the mobility regions and
the blob structure of the trajectories are intimately con-
nected to each other.
The number density of active sites, nactðtÞ, allows us to

estimate the volume accessible to the mobile particles, and
in Fig. 3 we plot nactðtÞ for different �. We see that, at short

FIG. 2 (color online). Light and dark points: Sites that have
been visited by the trajectory of two mobile particles. Pale blobs:
The mobility regions. t ¼ 107 and � ¼ 0:88.
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FIG. 3 (color online). Growth of number of active sites, nact, as
a function of time, for different �. The arrows mark ��.
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FIG. 1 (color online). Gsðr; tÞ for different times at � ¼ 0:87.
The �-relaxation time at this density is �� � 1:8� 107.
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times, nactðtÞ increases quickly, and we find nactðtÞ � 1�
expð�t=�Þ with � � 5, independent of �. This regime
corresponds to the initial growth of the blobs.
Subsequently the shape of nactðtÞ depends strongly on �.
For � ¼ 0:80 the number of inactive sites, 1� nact, decays
with a stretched exponential tail, with a stretching expo-
nent of around 0.6, a functional form that is found for all �.
At even larger �, nactðtÞ shows three regimes, with the
second regime being a period of extremely slow growth,
almost logarithmic and thus similar to the coarsening
process in disordered media [19]. Note that at short t the
typical distance between the blobs increases with � and the
growth of the blobs slows down with increasing �, since it
needs the presence of active sites (which are rare at high
density). This is the reason why the increase of nactðtÞ at
intermediate times becomes very slow with increasing �.
We also observe that at � ¼ 0:89, which is higher than the
density of �c ¼ 0:881 at which an apparent divergence of
relaxation time scales was observed [9], nactðtÞ is still an
increasing function, suggesting that the system will even-
tually relax [12]. Note that although these three regimes are
in qualitative agreement with the predictions of Ref. [12],
there are important differences since, e.g., the diffusion of
macro-vacancies discussed in Ref. [12] would lead to a
linear growth of nactðtÞ at long times, a behavior which is
not seen in Fig. 3. This might be due to the fact that the
calculations presented in Ref. [12] apply only at densities
that are extremely close to 1.0.

In order to characterize the geometry of the growing
clusters of active sites we have calculated PðsÞ, the distri-
bution of clusters that have exactly size s. In Fig. 4, we
have plottedPðsÞ for � ¼ 0:88 and different times. At short
times, t ¼ 10, PðsÞ has an exponential shape. This corre-
sponds to the initial geometry of active sites at few random
locations when particles explore their neighborhood. With
increasing time PðsÞ quickly transforms into a power law,

PðsÞ � s��, with an exponent � � 1:6. This indicates that
the growth process is different from random percolation for
which � ¼ 2:2. This difference is likely related to the fact
that there is a wide variation in the size of the cooperatively
rearranging regions seen at short times. At even later times,
the largest cluster starts growing and the tail in PðsÞ shifts
to larger and larger sizes, until the entire space is filled up.
Note that the observed largest cluster depends on system
size and thus the tail of PðsÞ is affected by finite size
effects.
Finally we investigate to what extent the dynamics is

encoded in the structure. We have seen that structural
relaxation is correlated with the development of the mobile
regions. Therefore it is interesting to check how the prop-
erties of these regions depend on the trajectories that start
from the same initial configuration. For this, we check
along several such trajectories how different are the con-
figurations of active sites formed at the same observation
time. To quantify that, we define the overlap function
QactðtÞ ¼ ½hq��ðtÞiic � n2actðtÞ�=½nactðtÞ � n2actðtÞ�, where

q��ðtÞ ¼ L�3
P

in
�
i ðtÞn�i ðtÞ, with niðtÞ ¼ 1 if site i is active

at time t and niðtÞ ¼ 0 otherwise. h:iic is the average over
the isoconfigurational ensemble [3], i.e., the ensemble of
all possible trajectories starting from the same configura-
tion of which � and � are two different members. Defined
in this way, QactðtÞ ¼ 1 if at time t the configuration of
active sites for two different trajectories are exactly the
same and QactðtÞ ¼ 0 if the two configurations are totally
different, apart from the trivial statistical overlap. Thus
Qact is a direct measure for the influence of the initial
structure on the mobility regions.
In Fig. 5, we show the time dependence of QactðtÞ for

different �. At short times QactðtÞ is independent of �, and
its value is small since the mobile particles can find random
directions to explore, which result in different configura-
tions of active sites and hence a small Qact. Subsequently
QactðtÞ has a peak at a time which approximately corre-
sponds to the time at which nactðtÞ enters the final regime of
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FIG. 4 (color online). Distribution of cluster size, PðsÞ, where
s is the size of cluster, for different times at � ¼ 0:88. Also
shown (dashed line) is an exponential fit to PðsÞ at t ¼ 10 and
(solid line) the function s�1:6 to highlight the emergence of
power law behavior of PðsÞ at intermediate times.
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growth, see Fig. 3, and which is much smaller than ��
(marked by arrows). For large value of � the height of this
peak is close to unity and it becomes extremely broad so
that QactðtÞ is quite large even at ��. This shows that the
configuration of active sites is, in a broad time window,
basically independent of the trajectory and thus encoded in
the initial structure, even for times of the order of �� (but
depends of course on the initial configuration). Note that
these results seem to be in contradiction to the claims made
in Ref. [4] since there it was argued that the structure
influences the dynamics only on time scales much shorter
than ��. However, in that work the authors considered this
influence on the level of individual particles whereas the
overlap QactðtÞ considered here is a collective quantity.
Therefore there is not necessarily a contradiction.

What structural property determines mobility? It is ob-
vious that for a site to be active, it needs empty space in its
neighborhood. Earlier work on lattice models has shown
that the high propensity sites are located near clusters of
empty sites [17]. In order to investigate the relation be-
tween structure and mobility we define another overlap
function. A lattice site is considered to be a generalized
vacancy of type k if the site and its six nearest neighbors
contains a total of at least k holes. Then we calculate, as a
function of time, the overlap of the active sites with these
generalized vacancies. The quantity we measure is AkðtÞ ¼P

ia
k
i niðtÞ=

P
iniðtÞ � ~ak. Here, aki ¼ 1 if at t ¼ 0 the site i

is a generalized vacancy of type k and 0 otherwise. Thus,
AkðtÞ is the probability that a generalized vacancy of type k
in the configuration at t ¼ 0 is an active site at time t, with
the trivial overlap ~ak (the density of generalized vacancies
of type k in the configuration at t ¼ 0) subtracted. Such a
quantity enables us to have a good measure of the corre-
lation between structure and dynamics. For low density,
i.e., � ¼ 0:65, A3ðtÞ has a fast decay, see Fig. 6. (Other
values of k have a qualitatively similar behavior.) With

increasing �, the characteristic time scale for the decay
increases with the tail becoming stretched in shape, the
underlying slowing down of the relaxation process result-
ing in the retention of the memory for longer time. In the
inset of Fig. 6, we have plotted different correlation func-
tions at � ¼ 0:88: the overlap function A3ðtÞ, the self-
intermediate scattering function Fsð�; tÞ, and the fraction
of active sites nactðtÞ. At this density, the �-relaxation time
�� � 4:4� 108. For this time scale, the fraction of active
sites is nactð��Þ � 0:50. However, if one extrapolates A3ðtÞ
to these time scales, the overlap is small. Therefore,
although measurement of QactðtÞ showed that the configu-
ration of active sites, at t � ��, is significantly determined
by initial structure, the use of generalized vacancies does
not fully demonstrate this strong dependence. Hence, a
better characterization of initial structure is necessary for
improving prediction for formation of mobile regions.
In conclusion, we have shown that, for the KA lattice

gas, the �-relaxation occurs via the percolation of mobile
regions in which particles move cooperatively. These re-
gions are encoded in the initial structure of the system with
a memory time that is on the order of ��. We emphasize,
however, that the initial structure does not necessarily
determine the trajectory of an individual particle but only
the location and the shape of the regions in which co-
operative dynamics is observed.
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