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An intrinsic relation between maximally entangled states and entanglement measures is revealed, which

plays a role in establishing connections for different entanglement quantifiers. We exploit the basic idea

and propose a framework to construct schemes for directly measuring entanglement of general states. In

particular, we demonstrate that rank-1 local factorizable projective measurements, which are achievable

with only one copy of an entangled state involved at a time in a sequential way, are sufficient to directly

determine the concurrence of an arbitrary two-qubit entangled state.

DOI: 10.1103/PhysRevLett.101.190503 PACS numbers: 03.67.Mn, 03.65.Ud, 03.65.Wj, 03.67.Lx

Introduction.—Quantum entanglement is one of the
most significant features of quantum mechanics [1], which
has attracted a lot of interest in the burgeoning field of
quantum information science and its intersection with
many-body physics [2,3]. Entanglement measures play a
central role in the theory of entanglement. It is well known
that antilinearity from symmetries with time reversal op-
erations is intrinsically nonlocal, which leads to a natural
routine to describe and estimate entanglement [4–10].
These entanglement measures based on nonphysical al-
lowed transformations are usually nonlinear functions of
the density matrix elements, and thus are difficult to de-
termine directly in experiments. It is worth pointing out
that there exists an alternative experimental favorable class
of entanglement quantifiers, which are directly defined
through the measurable observables [11,12]. The interest-
ing problems are as follows: How and why can these
quantities from (anti)symmetric projections serve as en-
tanglement quantifiers? Is there any connection between
the above two different classes of entanglement measures?

As far as determining entanglement is concerned, there
are two desirable features. The first is about the parametric
efficiency issue. It is inefficient and not necessary to obtain
all the state parameters as quantum state tomography [13],
in particular, when one considers high dimensional and
multipartite quantum systems. This concerns not only ex-
perimental determining entanglement itself, but is related
to the general theoretical problem about extracting infor-
mation efficiently from an unknown quantum state with the
least measurement cost [14]. Second, in many realistic
scenarios, entangled particles are shared by two distant
parties, Alice and Bob, e.g., long distance quantum com-
munication. It will be valuable that Alice and Bob can
measure entanglement with only local operations on indi-
vidual subsystems and classical communications (LOCC).

The basic ideas of measuring these entanglement mea-
sures based on nonphysical allowed transformations di-

rectly without state reconstruction [14–20] mainly rely on
multiple copies of entangled state; i.e., a number of en-
tangled states need to be present at the same time. This
could be difficult for certain physical systems. The requi-
site experimental components include structure physical
approximation (SPA) and interferometer circuit, the im-
plementation of which with only LOCC is a great chal-
lenge. One may wonder whether projective observables
can also help to determine nonphysical allowed transfor-
mation based entanglement measures.
In this Letter, we address the above problems by reveal-

ing an intrinsic connection between maximally entangled
states (MES) and the definitions of nonphysical allowed
transformation based entanglement measures. The connec-
tion enables us to find that (anti)symmetric projections can
indeed extract the properties of density matrices with non-
physical allowed transformations. This result opens the
possibility of establishing relations between various kinds
of entanglement quantifiers [6–12]. The connection also
allows us to propose a framework based on local projec-
tions to design schemes for directly measuring the entan-
glement quantifiers from nonphysical allowed transforma-
tions. We explicitly demonstrate the benefit in determining
entanglement of general two-qubit states. The most re-
markable feature is that only one copy of entangled state
need be present at a time, which is distinct from other
schemes using multiple copies of entangled state. As ap-
plications of our idea, we elucidate the physics underlying
the first noiseless quantum circuit for the Peres-Horodecki
separability criterion [4,5,21], which was obtained in [21]
through the mathematical analysis of polynomial invari-
ants [18]. Moreover, one can easily construct a circuit to
directly measure the realignment properties of quantum
states [10].
Connections between MES and entanglement mea-

sures.—One useful tool in the entanglement theory is
positive but not completely positive map, with antilinear
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conjugation as the most representative operation. Follow-
ing the Peres-Horodecki separability criterion [4,5], a lot of
entanglement detection methods and measures based on
the conjugation of density operator have been established
[6–9]. We propose to mathematically implement nonphys-
ical allowed transformations, in particular, antilinear con-
jugation, with the notation of MES. From an operational
viewpoint, MES with appropriate local unitary operations
can be associated to (anti)symmetric projective measure-
ments. Thus, our result makes a connection between anti-
linear conjugation [6–9] and (anti)symmetric projection
based entanglement quantifiers [11,12].
Lemma 1 Given an n-partite operator A on the Hilbert
space H ¼ H 1

N � � �NH n, with the dimension
dimðH iÞ ¼ di, the maximally entangled state of di � di
bipartite system is denoted as jSii ¼

Pdi�1
s¼0 jssi= ffiffiffiffiffi

di
p

, then

ðA � I�1��� �nÞjSi ¼ ðI1���n � ATÞjSi with jSi ¼ On

i¼1

jSiii�i:

(1)

Moreover, we have

trA ¼
�Yn

i¼1

di

�

hSjðI1���n � AÞjSi: (2)

Equation (1) is the generalization of the fact that a qubit
operator can travel through singlets, which has been used
to investigate the localizable entanglement properties of
valence bond states [22]. Here, from a different perspec-
tive, we view A itself as a density matrix � rather than an
operator on quantum states; Lemma 1 thus indicates that
with the notation of MES, we can mathematically imple-
ment the (partial) transpose (conjugation) of arbitrary
quantum states. Equation (2) is another key point, which
enables us to extract the properties of transformed density
operators through the projective measurements associated
with MES.

Remark 1.—Our idea is quite different from the SPA, in
which the transpose of quantum state is approximated by a
completely positive map [14,15]. It is worth pointing out
that, in Lemma 1, A can be a density operator of arbitrary
dimensional multipartite quantum systems.
Theorem 1 For a general quantum state � on the Hilbert
space H ¼ H 1

N � � �NH n, we denote the anti-
linear transformation of � as ~�u¼ðU1�����UnÞ�
��ðUy

1 �����Uy
n Þ and jSuii ¼ ðI �UiÞjSii. It can be

seen that [23]

ð���ÞjSui ¼ ðI1���n ��~�uÞjSui with jSui ¼
On

i¼1

jSuiii�i:

(3)

This will lead to

tr ð�~�uÞ ¼
�Yn

i¼1

di

�

tr

�On

i¼1

P ði�iÞ
u ð� � �Þ

�

; (4)

where Ui are local unitary operations, and P ði�iÞ
u ¼

jSuiii�ihSui j are projections on two copies of the ith

subsystem.
Remark 2.—Theorem 1 can help us to establish connec-

tions between antilinearity and (anti)symmetric projec-
tions. The result is quite general, e.g., Ui can be arbitrary
local unitary operators, and it is applicable for high dimen-
sional situations by using appropriate Ui or reducing the
projections of high dimensional bipartite systems into a
sum of two-qubit projections [11]. It also provides an in-
tuitive meaning of Wootters’ concurrence, which can be
linked with the success probability of establishingMES via
entanglement swapping following the above theorem.
Novel schemes for measuring entanglement.—Besides

the theoretical interest, with the above connection we find
that projective observables can help to determine these
nonphysical transformation based entanglement quanti-
fiers with much less experimental effort. We first demon-
strate how to directly measure the concurrence of general
states [6,8,9], and then explicitly illustrate the physics
underlying the first noiseless circuit for the Peres-
Horodecki separability criterion [4,5,7,21] following the
present idea. Finally, we construct a simple circuit for the
realignment separability criterion [10].
I. Scheme for directly measuring the concurrence of

general states.—The concurrence family of entanglement
measures are defined through the eigenvalues �j of �~�u as

in Theorem 1. In order to determine these eigenvalues,
quantum state tomography needs to obtain ðd1 � � �dnÞ2 �
1 parameters, while direct strategy without state recon-
struction only needs to measure the moments mk ¼P

j�
k
j , the number of which is d1 � � � dn, and thus it is

quadratically efficient.
Lemma 2 The moments of �~�u can be obtained as follows:

mk ¼ ðdadbÞk tr
�

ðP ðaÞ � P ðbÞÞVa2���a2kVb2���b2k
O2k

i¼1

ð�Þaibi
�

:

(5)

P ðsÞ ¼ P ðs1s2Þ
u � � � � � P ðs2k�1s2kÞ

u , and Vs2���s2k are k-circle

permutations (s ¼ a; b).

Proof. The k-cycle permutation VðkÞj�1ij�2i � � � j�ki ¼
j�kij�1i � � � j�k�1i is the key element for spectrum mea-

surement based on the property trðVðkÞ Nk
i¼1 AiÞ ¼

trðAk � � �A1Þ [24]. As in Lemma 1, using 2k copies of
entangled state and with the notation of MES, we can
mathematically have k copies of �~�u. Thus, one can get
Eq. (5) with the above two facts [23]. j
Remark 3.—For simplicity, we only give the formula-

tions for bipartite systems; Lemma 2, however, is valid for
general multipartite states. Our results provide a simple
and general framework to design schemes for directly mea-
suring the concurrence family of entanglement measures.
If we use the similar interferometer circuit for spectrum

measurement as usual, mk can be obtained by controlled
k-circle permutation and experimental feasible antisym-
metric projections, which means that half of controlled-
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swap operations are saved compared with controlled
2k-circle permutation. Since mk are real, we do not have
to measure the whole interference pattern in order to obtain
the visibility [14,15]. Nevertheless, the implementation of
interferometer circuit by LOCC is still complicated. The
experimental efforts can be reduced if no interferometer
circuit is required. We demonstrate the benefit of our
framework in the case of general two-qubit states by show-
ing that only rank-1 local factorizable projective measure-
ments are required, which then leads to another interesting
feature that we do not have to manipulate a number of
entangled states at a time, even the starting point of our
scheme is also based on multiple copies of entangled state.

Consider a general two-qubit state �, whose entangle-
ment can be quantified by Wootters’ concurrence as C¼
maxf0;�1��2��3��4g, where �i’s are the square roots
of the eigenvalues of �~� in the decreasing order [6], with
~� ¼ ð�y � �yÞ��ð�y � �yÞ. Before proceeding, we first

introduce some notations as j’0i ¼ �k
i¼1jSyi2i�1;2i, j’1i ¼

V2;...;2kj’0i and j’2i ¼ �V2k�1;2kj’1i, j’3i ¼ j’1i �
j’2i, where V1;...;lj�1i � � � j�li ¼ j�lij�1i � � � j�l�1i.
Theorem 2 Given 2k copies of general two-qubit state
%2k ¼ N

2k
i¼1ð�Þaibi , the kth moment mk can be determined

by the rank-1 local projective measurements as

m1¼4hP ðaÞ
0 �P ðbÞ

0 i
mk¼ 1

4m1mk�1þ22kðhP ðaÞ
1 �P ðbÞ

1 i�hP ðaÞ
2 �P ðbÞ

2 iÞ;
(6)

where k ¼ 2; 3; 4, and P 0 ¼ j’0ih’0j, P l ¼ j�lih�lj
(l ¼ 1; 2) with j�1i ¼ ðj’0i þ j’3iÞ=2, j�2i ¼ ðj’0i þ
ij’3iÞ=2. In particular, for k ¼ 2 the expectation value

hP ðaÞ
1 � P ðbÞ

1 i ¼ m2
1=16.

Proof We denote P i;j;u;v ¼ h’jjh’ij%2kj’uij’vi. It can be

seen that V2k�1;2kj’0i ¼ �j’0i and V2k�1;2kj’3i ¼ j’3i,
which leads to P 3;0;3;3 ¼ �P 3;0;3;3 ¼ 0. In a similar way,

one gets P i;j;u;v ¼ 0 if the four indices are either 0 or 3 and

the number of 0 is odd. After simple calculations, we have

P 3;3;0;0¼4ðhP ðaÞ
1 �P ðbÞ

1 i�hP ðaÞ
2 �P ðbÞ

2 iÞ [23]. Further-

more, we denote jc 0i � j’1i þ j’2i, thus P ¼
hc 0jhc 0j%2kj’0ij’0i ¼ m1mk�1=2

2k. Therefore, the kth
moment is

mk ¼ 22kP 1;1;0;0 ¼ 22k 1
4ðP þ P 3;3;0;0Þ: (7)

We conclude that mk are measurable by only rank-1 local
projective observables as Eq. (6). For the case of k ¼ 2,

j�1i ¼ j’1i which means that hP ðaÞ
1 � P ðbÞ

1 i ¼ m2
1=16. j

Remark 4.—Our scheme inherits the quadratic efficiency
by directly measuring four moments to determine the con-
currence of general two-qubit states. Only rank-1 local
projective measurements are required, which is expected
to provide more flexibility in the experiments.

II. Noiseless quantum circuit for the Peres separability
criteria.—The connection between MES and entanglement
measures plays its role not only in the concurrence family,
but also in the other scenarios. As an example, the first

noiseless network to measure the spectrum of a partial
transposed density operator [21] from the structure of
polynomial invariants can be recovered from a different
perspective. Based on Lemma 1, we can mathematically
implement the partial transpose as

ðI1 � ��12 � I�2ÞjSi1�1jSi2�2 ¼ ½I1 � I2 � ð�T2Þ�1 �2�jSi1�1jSi2�2:
We note that V�1 �3jSi1�1jSi3�3 ¼ V13jSi1�1jSi3�3; thus with k
copies of entangled states we obtain the kth moment of
�T2 as

tr ð�T2Þk ¼ tr

�

V�1���2k�1V
y
2���2k

�Ok

l¼1

�2l�12l

��

: (8)

The right-hand side of Eq. (8) are exactly the circuits in
[21].
III. Realignment criterion for entanglement detection.—

Realignment of density operators, defined as Rð�Þij;kl ¼
�ik;jl, is another important operation to establish separabil-

ity criteria. Based on the trace norm of Rð�Þ, Chen et. al.
derived a low bound for the concurrence of arbitrary di-
mensional da � db bipartite systems [10]. One can mathe-
matically implement the realignment as

V1�12 � I�1 �2jSi1�1jSi2�2 ¼ I12 � ½Rð�Þ��1 �2jSi1�1jSi2�2
V2�12 � I�1 �2jSi1�1jSi2�2 ¼ I12 � ½Ryð�Þ��1 �2jSi1�1jSi2�2;

(9)

where V1 ¼ V�1 �2V2�2V12, V2 ¼ V�1 �2V1�1V12, and jSi ¼P
d�1
s¼0 jssi with d ¼ maxfda; dbg. Thus, one can easily

write the kth moment of Rð�ÞRyð�Þ as [23]

tr ½Rð�ÞRyð�Þ�k¼ tr

�Ok

i¼1

ðVa2i�1a2iVb2i�1b2i�2
Þ
�O2k

i¼1

�aibi

��

;

with b0 ¼ b2k, which enables us to construct a simple
noiseless circuit.
Experimental implementation.—The main feature of our

scheme is taking advantage of the feasible (anti)symmetric
projections to access the properties of these nonphysical
allowed transform based entanglement quantifiers, which
offers more flexibility in various kinds of physical systems.
We demonstrate in the following how experimental efforts
can be reduced in directly measuring the concurrence of
general two-qubit entangled states.
One can obtain m1 through antisymmetric projective

measurements on two copies as Eq. (6). By noting that
j�2i ¼ U34j’1i, where U34 ¼ iþ ð1� iÞjSyihSyj, only

one extra two-qubit gate for each party is required to
determine m2. This can be achieved in certain physical
systems, e.g., optical lattice with engineered nearest neigh-
bor interactions [25]. To determine the higher momentsm3

and m4, more copies of entangled states are required. One
potential physical system is the ensembles of multilevel
quantum systems, in which 10–20 qubits can be built in
single trapped cloud of ground state atoms [26,27]. The
single element in our scheme, i.e., rank-1 local projective
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measurement, is more favorable in such physical systems
than the conventional quantum circuits.

Furthermore, the requirement for the schemes on mul-
tiple copies of entangled state [14–20] that a number of
entangled state (up to 8 copies) have to be present at the
same time becomes unnecessary in our scheme by utilizing
the intriguing matrix product state (MPS) formalism
[28,29]. Every pure state jc i has a MPS representation,
and thus can be generated in a sequential way, i.e.,
V½2k� � � �V½1�j’LiCj0 � � � 0i1���2k ¼ j’RiCjc i1���2k, where

j’LiC and j’RiC are the initial and final state of an auxiliary
system, e.g., cavity mode or atoms [30]. V½i� is a unitary

interaction between qubit i and C. By reversing the above
procedure, we can obtain the rank-1 local projective ob-
servable hc jhc j%2kjc ijc i of Eq. (6) in a similar sequen-
tial way as in Fig. 1. First, the auxiliary system is prepared
in j’Ri, entangled pairs are generated one by one, pass
through and interact with C, then measured along the ẑ ba-
sis. Only if the results of all steps are 00, we need to
measure the auxiliary system with MC ¼ j’LiCh’Lj.
Otherwise, if the result of any step is not 00, we restart
the iteration and do not need to generate all the 2k copies.
Our rough estimation shows that in comparison with quan-
tum state tomography, for each observable, the involved
qubits are a little more (5=4 and 4=3 vs 1); however, the
total number of entangled states that needs to be generated
is even less (95=12 vs 9) [23].

Remark 5—All current schemes for directly measuring
entanglement also raise an interesting problem: How does
entanglement play its role in reducing the measurement
cost in extracting information from an unknown quantum
state?

Conclusions.—Maximally entangled state retains its
fundamental role in the entanglement theory, which pro-
vides an approach to investigate the connections between
different entanglement quantifiers. With the notation of
maximally entangled states, one can mathematically im-
plement nonphysical allowed transformations of quantum
states. This enables us to design novel schemes for directly

measuring various kinds of entanglement quantifiers. The
benefit is explicitly demonstrated for general two-qubit
states, in which only rank-1 local projective measurements
are required. It is parametrically efficient without increas-
ing the requirement for state generation over quantum state
tomography.
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FIG. 1 (color online). Implementation of rank-1 local projec-
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