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We demonstrate the equilibration of isolated macroscopic quantum systems, prepared in nonequilib-

rium mixed states with a significant population of many energy levels, and observed by instruments with a

reasonably bound working range compared to the resolution limit. Both properties are satisfied under

many, if not all, experimentally realistic conditions. At equilibrium, the predictions and limitations of

statistical mechanics are recovered.
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Fundamental aspects of equilibrium statistical mechan-
ics (ESM) are intensely reconsidered at present in the
context of (almost) integrable many-body quantum sys-
tems [1–4], bringing back to our attention that very basic
issues are still not satisfactorily understood [5–13]. As in
every theory, we are faced with the three subproblems to
realistically model preparation, time evolution, and mea-
surement of a given system. It is well known and will be
worked out in detail below that the question of experimen-
tally realistic initial conditions and observables is much
more urgent in the ‘‘derivation’’ of ESM than in most other
fields [5,7–9,11,14]. Regarding time evolution, we take the
widely (yet not unanimously) accepted viewpoint that
standard quantum mechanics without any additional ‘‘pos-
tulate’’ or ‘‘hypothesis’’ must do [15,16]. The two key
questions are then: How far does a nonequilibrium seed
evolve to a stationary long-time behavior (‘‘equilibra-
tion’’)? How much is this steady state in agreement with
the corresponding ESM ensemble (‘‘thermalization’’)?

Since open systems (interacting and entangled with an
environment) are not directly tractable by standard quan-
tum mechanics, the starting point must be a closed
(autonomous) system (microcanonical framework), incor-
porating all relevant thermal baths, reservoirs, etc. [15,16].
Accordingly, the system ‘‘lives’’ in some Hilbert spaceH
and is at any time instant t � 0 in a mixed state (includ-

ing pure states as special case) �ðtÞ ¼ Ut�ð0ÞUy
t with

propagator Ut :¼ expf�iHt=@g, seed �ð0Þ, and time-
independent Hamiltonian H. Denoting its eigenfunctions
and eigenvalues by jni and En (n ¼ 0; 1; 2; . . . ) and the
matrix elements hmj�ðtÞjni by �mnðtÞ we thus obtain

�ðtÞ ¼ X
�mnð0Þei½En�Em�t=@jmihnj; (1)

where the sum runs over all m, n � 0. As usual, observ-
ables are represented by Hermitian operators A with ex-
pectation values Trf�ðtÞAg and, without loss of generality,
are assumed not to depend explicitly on time.

Generically, the ensemble �ðtÞ is not stationary right
from the beginning, in particular, for an initial condition
�ð0Þ out of equilibrium. But if the right-hand side of (1)

depends on t initially, it cannot approach for large t any
time-independent ‘‘equilibrium ensemble’’ whatsoever. In
fact, any mixed state �ðtÞ returns arbitrarily ‘‘near’’ to its
seed �ð0Þ for certain, sufficiently large time-points t, and
similarly for the expectation values Trf�ðtÞAg, see
Appendix D in Ref. [17]. More specifically, consider any
�ð0Þ with at least one �mnð0Þ � 0 and ! :¼ ½En �
Em�=@ � 0. Choosing

A ¼ Bþ By; B :¼ jmihnj=�mnð0Þ (2)

it follows that Trf�ðtÞAg ¼ 2 cosð!tÞ. It is thus clearly
impossible to ‘‘derive’’ (since it is not correct) ESM for
arbitrary initial conditions and observables.
Our first basic assumption concerns the quantity [18]

R :¼
�X

�2
nnð0Þ

�
1=3 � ½max

n
�nnð0Þ�1=3: (3)

According to (1), the �nnðtÞ represent the ‘‘occupation
probabilities’’ of the energy eigenstates and are indepen-
dent of t. For a system with f degrees of freedom, there are

roughly 10OðfÞ energy levels in every interval of 1 J beyond
the ground state energy E0 [15,19]. For a macroscopic
system with f ¼ Oð1023Þ, the levels are thus unimaginably
dense on any decent energy scale and even the most careful
experimentalist will not be able to prepare the system such
that the resulting ensemble �ð0Þ populates only a few
energy eigenstates with significant probabilities [15]. For

example, assume that there are exactly 10ð1023Þ energy
levels per J. Even if the system preparation defines the

energy up to an experimental uncertainty of 10�ð1022Þ J,
there still remain N :¼ 100:9�1023 energy levels which may
be occupied with significant probabilities. If all of them are
populated equally, we obtain �nnð0Þ ¼ 1=N forN indices n

and �nnð0Þ ¼ 0 for all other n, yielding R � 10�0:3�1023

according to (3). If not all N levels are populated equally,
but rather any �nnð0Þmay assume arbitrary values between

zero and 10ð1022Þ times the average population 1=N, Eq. (3)

still yields R � 10�0:26�1023 . Returning to the general case,
we can conclude that even if the system energy is fixed up
to an extremely small experimental uncertainty and even if
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the energy levels are populated extremely unequally, we
still expect that R will be extremely small, typically

R ¼ 10�OðfÞ: (4)

Physical reasons for such a broadly spread energy level
population include: the time-energy uncertainty relation,
imperfect (as opposed to ideal) measurements during the
system preparation (t < 0), entanglement processes and a
time dependence of the Hamiltonian, both caused by that
part of the environment from which the system is isolated
for t � 0 but not for t < 0.

Given �ð0Þ, letHþ � H be the Hilbert space spanned
by those basis vectors jni for which �nnð0Þ � 0,

H þ :¼ spanfjnij�nnð0Þ> 0g: (5)

Exploiting Cauchy-Schwarz’s inequality [20]

j�mnðtÞj2 � �mmðtÞ�nnðtÞ (6)

it follows that �nmðtÞ ¼ 0 whenever �nnðtÞ ¼ 0 or
�mmðtÞ ¼ 0; i.e., ‘‘all nontrivial things are expected to
happen within Hþ’’.

Our second basic assumption is that A represents an
experimental device with a finite range of possible out-
comes of a measurement within Hþ [21],

�A :¼ max
Hþ

hc jAjc i �min
Hþ

hc jAjc i ¼ amax � amin; (7)

where the maximization and minimization is over all nor-
malized vectors jc i 2 Hþ and where amax and amin are
the largest and smallest eigenvalues of the restriction (or
projection) of A onto Hþ. Moreover we require that this
working range �A of the device A is limited to experimen-
tally reasonable values compared to its resolution limit �A,
for instance �A < 101000�A.

In the worst case, Hþ ¼ H . However, in many cases
the populations �nnð0Þ may be safely negligible, e.g.,
beyond some finite upper energy threshold, yielding a
finite-dimensional Hþ, while H is typically infinite di-
mensional. Hence, (7) will be finite even for operators A
with an unbound spectrum on H . In any case, our above
specified class of admissible observables A clearly includes
any realistic measurement apparatus.

For the example (2) we can infer from (3), (6), and (7)

that �A � 2=R3=2. Hence, the oscillations Trf�ðtÞAg ¼
2 cosð!tÞ are below the resolution limit under our two
basic assumptions. These (or similar) assumptions seem
thus indispensable for taming the oscillations in (1).

Given any �ðtÞ, we define the auxiliary operator [22]

�eq :¼
X

�nnð0Þjnihnj (8)

and focus on the mean square deviation

�2
A
:¼ ½Trf�ðtÞAg � Trf�eqAg�2; (9)

where the overbar indicates an average over all times

t � 0. The two trace-terms in (9) can be unified into

Trf~�ðtÞAg with ~�ðtÞ :¼ �ðtÞ � �eq. Introducing ~A :¼ A�
minHþhc jAjc i we can infer from (7) that

0 � hc j ~Ajc i � �A for all normalized jc i 2 Hþ:
(10)

Since hnj~�ðtÞjni ¼ 0 it follows that Trf~�ðtÞg ¼ 0 and that

the variance (9) can be rewritten as ½Trf~�ðtÞ ~Ag�2. With the
help of (1) and �nm :¼ �nmð0Þ we finally obtain

�2
A ¼ X0 ~Ajk�kj

~Amn�nme
i½Ej�EkþEm�En�t=@; (11)

where the sum
P0

runs over all j, k, m, n ¼ 0; 1; 2; . . . with
j � k and m � n. Next we exploit the fact that Ej � Ek þ
Em � En vanishes for generic [16] Hamiltonians H only
for j ¼ n and k ¼ m, given j � k and m � n [23]. Since
the time averaged exponentials in (11) vanish if Ej � Ek þ
Em � En � 0 we can conclude that

�2
A ¼ X0j ~Amnj2j�mnj2 �

X j ~Amnj2j�mnj2; (12)

where the first sum runs over all m � n and the second
over all m, n. With (6) and (8) we thus obtain

�2
A � X

~Amn�nn
~Anm�mm ¼ Xhmj ~A�eqjnihnj ~A�eqjmi:

The sum over n amounts to an identity operator and that

over m yields Trf½ ~A�eq�2g. This trace over the entire space
H can be restricted toHþ without changing its value, as
follows from (5) and (8). Again, this trace remains un-

changed if we now replace ~A by ~Ap :¼ P ~AP, where P is

the projector onto Hþ. Next, we evaluate this trace with

the help of the eigenvectors j�ni of ~Ap (restricted toHþ),
yielding

�2
A � Xh�mj�eq

~Apj�nih�nj�eq
~Apj�mi:

Observing that ~Apj�ni ¼ j�nih�nj ~Apj�ni (since j�ni is

eigenvector of ~Ap) and that h�nj ~Apj�ni ¼ h�nj ~Aj�ni
(since j�ni 2 Hþ and thus Pj�ni ¼ j�ni) we can exploit
(10) to obtain

�2
A � �2

A

Xh�mj�eqj�nih�nj�eqj�mi:

The sum over n yields the identity operator (on Hþ) and
that over m amounts to Trf�2

eqg. With (3) and (8) we finally

arrive at

�2
A � �2

AR
3: (13)

Considering Trf�ðtÞAg as a random variable with uni-
formly distributed t � 0, a similar (but simpler) calculation

as before yields for its mean value the result Trf�ðtÞAg ¼
Trf�eqAg. Hence, (9) is its variance and by combining (13)
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with Chebyshev’s inequality [24], we can conclude that

Prob ðjTrf�ðtÞAg � Trf�eqAgj � R�AÞ � R: (14)

In view of (4) it follows that for the overwhelming majority
of times t � 0 the difference between Trf�ðtÞAg and
Trf�eqAg is way below the instrumental resolution limit

�A for any experimentally realistic observable, see below
(7). In other words, the system looks exactly as if it were in
the mixed state �eq for the overwhelming majority of times

t � 0 [22], though the ‘‘true’’ �ðtÞ is actually quite differ-
ent, see above (2). This is our first main result.

Note that (14) is still compatible with the recurrence
property of Trf�ðtÞAgmentioned above (2) but implies that
such excursions from the ‘‘apparent equilibrium state’’ �eq

must be exceedingly rare events.
Exactly the same apparent equilibration towards �eq

emerges if one propagates �ð0Þ backward in time (keeping
the system isolated). Along the entire real t-axis, an initial
condition �ð0Þ far from equilibrium thus closely resembles
one of the above mentioned rare excursions, just that the
location of this excursion is on purpose chosen as the time-
origin. In other words, the quantum mechanical time in-
version invariance is maintained, but when starting out of
equilibrium, an ‘‘apparent time arrow’’ emerges with ex-
tremely high fidelity.

While (14) provides a bound for the relative amount of
time the system exhibits notable deviations from equilib-
rium, the typical duration of one given excursion, or equiv-
alently, the characteristic relaxation time of an out of
equilibrium initial condition �ð0Þ remains unspecified.
Since one can easily find examples with arbitrarily large
or small relaxation times, any further quantification of the
relaxation process inevitably would require a considerably
more detailed specification of the Hamiltonian H, the
initial state �ð0Þ, and the observable A.

Considering and estimating quantities like (9) is very
natural and has a long tradition: Merits and shortcomings
of the early works are reviewed, e.g., in [7], most notably
Ludwig’s approach [5]. In particular, many of them [6,7]
involve an extra average over initial conditions with the
effect that any specific nonequilibrium seed must be ex-
cluded as ‘‘potentially untypical’’ from the general con-
clusions. Turning to the more recent precursors, Peres’
approach [8] is comparable to ours up to Eq. (12) but

then proceeds with the conjecture that the ~Amn are pseu-
dorandom matrix elements, statistically independent of the
�nm, for which there are general arguments [8] and nu-
merical evidence [25] (and counter-evidence [1]) but no
proof. For pure states, Srednicki obtained similar results
[11] by exploiting a common conjecture about the semi-
classical behavior of classically smooth observables A in
systems with a fully chaotic classical limit. Again, this
conjecture is based on good arguments [26] but no proof.
Moreover, typical classical many-body systems are not
expected to behave fully chaotic [27]. Somewhat similar

conclusion have been reached even earlier by Deutsch [10]
via additional hand waving arguments. Finally, rigorous
results comparable to (14) are due to [4,12], but only for
rather special Hamiltonians H and initial conditions.
According to (8) and the discussion below (14), expec-

tation values become practically indistinguishable from

Tr f�eqAg ¼
X

�nnð0ÞAnn (15)

after initial transients have died out (equilibration). In how
far is this in agreement with ESM, predicting [15] ther-
malization, i.e., the appearance of the microcanonical en-
semble �mic instead of �eq in (15)? In case �mic and �eq

yield measurable differences for experimentally realistic
�ð0Þ and A, the ‘‘purely quantum mechanical’’ prediction
(15) is commonly considered as ‘‘more fundamental’’ [1–
3]. In other words, our derivation of ESM is complete,
provided the latter is valid itself. In the opposite case, there
is nothing to derive, but the quantity in (15) still governs
the (time-) typical behavior. This the second main result of
our Letter.
A first well-known validity condition for ESM is a

‘‘sharp energy E’’; i.e., all the �nnð0Þ with En 2 I :¼
½E; Eþ�E� sum up to almost unity, �E being small but
still experimentally realistic [15]. In particular, the �mic

nn are
constant for all En 2 I and zero otherwise [15], and as a
second (often tacit) validity condition for ESM, the result-
ing expectation values Trf�micAg are assumed to be (practi-
cally) independent of the exact choice of �E and E.
Basically, this means that the details of �nnð0Þ do not
matter in (15), henceforth called property (P). The same
conclusion (P) follows from the equivalence of the micro-
canonical and canonical ensembles (for all energies E),
considered as a self-consistency condition for ESM.
Clearly, property (P) is tantamount to replacing �eq in

(15) by �mic. Our first remark regarding (P) itself, is that
no experimentalist can control the populations �nnð0Þ of
the unimaginably dense energy levels En, apart from the
very gross fact that they are ‘‘mainly concentrated within
I’’. If the details would matter, not only ESM would break
down but also reproducing measurements, in particular, in
different labs, would be largely impossible. Second, one
can readily construct observables and initial conditions,
being experimentally realistic according to our definitions
but still violating (P). The fact that ESM is known to have
an extremely wide experimental applicability implies that
our so far notion of ‘‘experimentally realistic’’ is still too
general. The simplest option seems to require/assume that
the expectation values Ann ¼ hnjAjni hardly vary within
the energy interval I. This is similar in spirit to classical
coarse graining, and, in fact, is part of the already men-
tioned common conjecture about the semiclassical behav-
ior of fully chaotic classical systems [26]. Next, even if the
Ann notably vary, following Peres [8] the immense number
of relevant summands in (15) may—for ‘‘typical’’ A and
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�ð0Þ—lead to a kind of statistical averaging effect and thus
a largely �ð0Þ-independent final result. All these conjec-
tures about ‘‘truly realistic experimental conditions’’ be-
come even more compelling by considering that,
‘‘canonically’’, A only affects a small subsystem, weakly
coupled to a ‘‘big’’ rest, which can be readily traced out in
(15), with the effect of an extra averaging step [6,7,12,13].
Yet, the apparent universality of property (P) and its rela-
tion to ‘‘more basic’’ system properties like ‘‘ergodicity’’
and ‘‘(non-)integrability’’ are still not very well understood
[1,7,8,26,28].

Numerically, the validity and limits of such conjectures
and of ESM itself have been exemplified, e.g., in
[1,3,9,25]. While the details are not yet settled, equilibra-
tion in agreement with (15) was seen in all cases. Also the
numerical observation that already quite small particle
numbers often work surprisingly well is explained by
(14) in view of (4).

In the classical case, proving the counterpart of the

relation Trf�ðtÞAg ¼ Trf�eqAg (see above Eq. (14)) is tan-
tamount to the notorious ergodicity problem [7]. The next
step, namely, evaluating the classical counterpart of (9)
remains as an even more difficult open problem.
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