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We study the Dirac equation in confining potentials with pure vector coupling, proving the existence of

metastable states with longer and longer lifetimes as the nonrelativistic limit is approached and eventually

merging with continuity into the Schrödinger bound states. The existence of these states could concern

high energy models and possible resonant scattering effects in systems like graphene. We present

numerical results for the linear and the harmonic cases and we show that the density of the states of

the continuous spectrum is well described by a sum of Breit-Wigner lines. The width of the line with

lowest positive energy well reproduces the Schwinger pair production rate for a linear potential: this gives

an explanation of the Klein paradox for bound states and a new concrete way to get information on pair

production in unbounded, nonuniform electric fields, where very little is known.
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The absence of bound states for the Dirac equation in
confining potentials poses a delicate question of physical
interpretation. It was in fact shown in [1] that the asymp-
totically oscillating behavior of the solutions of the Dirac
equation with vector coupling and a potential given by a
positive power of the modulus of the position variable
implies a purely continuous spectrum. The result has
been subsequently confirmed and generalized by proving
that even any self-adjoint extension of the boundary value
problem has only a purely continuous spectrum [2]. This
situation is contrary to physical intuition and makes it hard
to justify a perturbative approach to the relativistic correc-
tions, since no definite perturbed eigenvalues exist. Most
later investigations have therefore tried different ways to
introduce confining potentials into the Dirac equation, e.g.,
by scalar coupling or by projection onto the large compo-
nent (see [3] for a review); in doing so, however, we do not
find an appropriate description of physically relevant sys-
tems such as charged particles in strong electric fields. A
possible way out of this difficulty was given in the mathe-
matical paper [4], where a so called ‘‘weak quantization’’
was introduced to treat the (1þ 1)-dimensional Dirac
equation with a linear potential. The analysis is developed
in the complex plane of the energy; when the Schrödinger
limit is approached it is shown that the real part of the
energy converges to the nonrelativistic spectrum and the
imaginary part becomes exponentially vanishing. For a
linear potential, analytical solutions are available in terms
of special functions and in [4] the spectral quantities were
estimated by perturbative expansions, having thus a very
limited range of validity, out of which no general picture
can emerge. Moreover a coherent physical interpretation
was clearly outside the mathematical purpose of the author.
To our knowledge no further development along these lines
is found in literature since.

From a physical point of view, the presence of an
unbounded increasing potential brings to bear upon the
problem arguments similar to those of the Klein paradox,
widely studied both in first and in second quantization [5–
7]. Recently, a field-theoretical interpretation using nu-
merical methods based on spatial and temporal resolution
was given in [8], where it is found that the pair production
by the potential is suppressed when the spatial density of
the incoming electron overlaps with the potential region
and that the transmitted portion of the wave packet, in a
single particle description, corresponds to the amount by
which the electron reduces the positron’s spatial density.
Although in this Letter we strictly remain in a first quan-
tized framework and we are dealing with the stationary
problem defined by the Dirac equation rather than with a
scattering picture, still we shall see that the pair production
rate is recovered in a natural way. Our treatment follows
the classical methods of the spectral analysis [9,10], and, in
particular, it deals with an accurate evaluation of the den-
sity of the states of the continuous spectrum. It can be
compared with the phenomenological approach in terms of
Gamow vectors [11], mainly used to describe resonances in
composite systems of solid state and nuclear physics. The
investigation is necessarily numerical; thus it does not
suffer the limitations of the perturbative expansion and it
can easily be extended to more general potentials for which
analytical solutions do not exist. We will present in detail
the results of the linear and quadratic potentials. The
general situation can be summarized as follows. In non-
relativistic quantum mechanics the spectrum is discrete,
the eigenvalues correspond to the real zeroes and poles �i

of a spectral function introduced by Weyl (traditionally
denoted by mð�Þ, [9]) and the density of the states reduces
to a sum of � functions, one for each bound state. In the
Dirac equation the �i move off the real axis, the spectrum
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becomes purely continuous and the density of the states,
�ð�Þ ¼ �Imðmð�ÞÞþ Imð1=mð�ÞÞ for real �, appears now
as a sum of Breit-Wigner (BW) lines whose central values,
determined by Reð�iÞ, are closer and closer to the non-
relativistic eigenvalues and whose widths, determined by
Imð�iÞ, are more and more narrow for decreasing values of
the ratio of the interaction to the mass energy.

The physical interpretation suggested by these facts is
that the broadening of the � lines is due to transitions
between positive and negative energy sectors induced by
the supercritical field; thus, although in the relativistic
context the nature of the spectrum is completely changed,
still narrow BW lines signify the presence of metastable
states, giving rise to resonances in the scattering cross
section around the line energies. On the one hand, there-
fore, the continuity to the nonrelativistic states is recov-
ered. On the other, contrary to what occurs for the
Schrödinger ground state, in the relativistic regime also
the lowest positive energy state decays. The second quan-
tized counterpart of this fact is that the Fock vacuum will
not remain such forever, but, according to the usual theory
of the effective action [6,12], it will decay with the ex-
ponential law jh0ðtÞj0ðtþ TÞij2 ¼ expð�VTwfÞ, where
wf is the pair production rate for unit volume and unit
time. We thus expect similar behaviors of the line width of
the lowest positive energy state and of the pair production
vs the interaction strength. This circumstance appears very
well verified for the pair production rate in a constant
electric field, as obtained by Schwinger [13,14], so that
we are led to assume that the width of the first resonance
can provide a quantum mechanical way of estimating the
pair production for general situations where little is known
from QED, as in the case of unlimited growing potentials
(see [15,16] for recent developments). We then present new
data for a quadratic potential, corresponding to an electron
in a uniformly growing electric field, finding a pair pro-
duction behavior very similar to the Schwinger’s one. We
finally believe that our results can be relevant not only in
model building of quark systems [17,18], but also in in-
vestigations of Klein paradox in strong crystalline fields
[19] as well as in the very recent and expanding subject of
the graphene physics, where the influence of impurities is
described by the Dirac equation with vector coupling [20]:
the metastable states may prove essential for understanding
possible effects of resonant scattering.

Consider the (1þ 1)-dim Dirac equation in a unit sys-
tem with @ ¼ 1,

c 0ðxÞ � ½ð1=cÞfE�UðxÞgi�y þmc�x�c ðxÞ ¼ 0 (1)

where c ðxÞ ¼ tðc 1ðxÞ; c 2ðxÞÞ and �i are the Pauli matri-
ces. For the family of even potentials UðxÞ ¼ ajxjn the
Eq. (1) can be studied in ½0;1Þ, having infinity as the
unique singularity in the limit point case [9]. Therefore,
from the Weyl general theory of singular boundary value
problems [9,10], for ImðEÞ> 0 there exists only one nor-

malizable solution ~c ðxÞ of the equation, up to a constant

factor. If fc ðiÞðx; EÞgi¼1;2 � ftðc ðiÞ
1 ðx; EÞ; c ðiÞ

2 ðx; EÞÞgi¼1;2 is

a fundamental system of spinor solutions of (1) corre-

sponding to the initial conditions c ðiÞ
j ð0; EÞ ¼ �i

j, i, j ¼
1, 2, the Weyl function mðEÞ is defined by the expansion
~c ðx; EÞ ¼ c ð1Þðx; EÞ þmðEÞc ð2Þðx; EÞ. Thus, because of

the normalizability of ~c ðxÞ, mðEÞ ¼ �limx!1c
ð1Þ
i ðx; EÞ=

c ð2Þ
i ðx; EÞ for both spinor components i ¼ 1 and 2. From

the conditions in zero we also have

mðEÞ ¼ ~c 2ð0; EÞ= ~c 1ð0; EÞ: (2)

Finally the density of the states for real E0 reads [10],

�ðE0Þ ¼ lim
�!0þ

ð�ImfmðE0 þ i�Þg þ Imf1=mðE0 þ i�ÞgÞ:
(3)

For calculation reasons, we find it convenient to define

�ðxÞ ¼ tð�1ðxÞ; �2ðxÞÞ ¼ 2�ð1=2Þið�y þ �zÞc ðxÞ (4)

obtaining for �ðxÞ the following equation:

�0ðxÞ � ½ði=cÞfE�UðxÞg�z �mc�x��ðxÞ ¼ 0: (5)

As previously we denote by f�ðiÞðx; EÞgi¼1;2 the fundamen-

tal spinor solutions of (5) with initial conditions

�ðiÞ
j ð0; EÞ ¼ �i

j. Hence, if
~�ðx; EÞ is the normalizable so-

lution of (5) corresponding to ~c ðx; EÞ and we expand
~�ðx; EÞ ¼ �ð1Þðx; EÞ þ �ðEÞ�ð2Þðx; EÞ, we have again the
finite limit

�ðEÞ ¼ � lim
x!1�

ð1Þ
i ðx; EÞ=�ð2Þ

i ðx; EÞ; i ¼ 1; 2; (6)

or the equivalent expression �ðEÞ ¼ ~�2ð0; EÞ= ~�1ð0; EÞ.
The relation between mðEÞ and �ðEÞ is thus found to be

mðEÞ ¼ i½�ðEÞ þ i�½�ðEÞ � i��1: (7)

Finally, introducing the ‘‘nonrelativistic energy’’ ENR by
E ¼ ENR þmc2, the elimination of �2ðxÞ yields the sec-
ond order equation for �1ðxÞ

�00
1 ðxÞ þ ½2mfENR �UðxÞg þ c�2RðxÞ��1ðxÞ ¼ 0 (8)

where RðxÞ ¼ icU0ðxÞ þ fENR �UðxÞg2. The nonrelativis-
tic limit for c ! 1 is then evident.
Let us now consider the specific cases of the potentials

UðxÞ ¼ Ejxj and UðxÞ ¼ ð1=2Þm!2x2. For the linear po-
tential we introduce

y¼ð2mEÞ1=3x; �¼
�
2m

E2

�
1=3

ENR; �¼ 1

4c2

�
2E
m2

�
2=3

(9)

and for the quadratic potential we let

y ¼ ðm!Þ1=2x � ¼ ð2=!ÞENR; � ¼ !=ð4mc2Þ;
(10)
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so that in both cases the nonrelativistic limit is obtained for
� ! 0. Equations (1), (5), and (8), then, specify to

c 0ðyÞ ��1=2½�nðyÞi�y þ ð2�Þ�1�x�c ðyÞ ¼ 0 (11)

�0ðyÞ � i�1=2½�nðyÞ�z þ ið2�Þ�1�x��ðyÞ ¼ 0 (12)

�00
1 ðyÞ þ ½��2

nðyÞ þ i�1=2nyn�1 � ð4�Þ�1��1ðyÞ ¼ 0

(13)

with n ¼ 1, 2 and �nðyÞ ¼ �þ 1=ð2�Þ � yn. When n ¼
1 the normalizable solutions of (13) with complex spectral
parameter are known [4], and they are all proportional to

the cylinder function Di�ð�zÞ, with � ¼ ð2�1=2Þ�3 and

z ¼ ð�4�Þ1=4�1ðyÞ. Carrying out the calculations previ-
ously described, it is straightforward to arrive at the ex-
pression for the density of the states for Eq. (11). The
general properties of �ð�;�Þ, as in (3), can be appreciated
by looking at the complete numerical results. First we see
the convergence to the Schrödinger levels when � ! 0.
For instance, the peaks of the first resonances for� ¼ 0:01
are located at 1.0197, 2.3274, 3.2284, 4.0555, 4.7756: these
should be compared with the first zeroes of the derivative
of the Airy function and of the function itself (even and odd
solutions, respectively), 1.0190, 2.3384, 3.2482, 4.0884,
4.8201. Secondly, in comparison with the nonrelativistic
case, the spacing of corresponding resonances decreases
for increasing values of the energy and of the interaction
strength. In Fig. 1 we present the plot of �ð�;�Þ for n ¼ 1,
� ¼ 0:3 and 1. The fit of the density of the states by a sumP

N
i¼1 ci�

2
0i	i½ð�2 � �2

0iÞ2 þ �2
0i	

2
i ��1 of BW curves with

the appropriate parameters �0i, 	i and coefficients ci, gives
a perfect superposition with �ð�;�Þ.

In the left part of Fig. 4 we compare the width 	 of the
first resonance with the pair production per unit length and
time in a uniform electric field [13], that in the variables (9)
reads

wfð�Þ ¼ �
�1 ln½1� expð� 
=ð4�3=2ÞÞ�: (14)

As stated above, the excellent agreement, without any free

parameter to be adjusted, proves that pair production and
line broadening are two different descriptions of a same
physical situation. The minor differences, mainly for in-
creasing�, can be partly assigned to the description of the
spectrum in terms of BW lines and partly to the fact that the
Schwinger pair production is an effective one-loop calcu-
lation, possibly under-estimating the actual production rate
[15]: one could make these small differences vanishing not
by exponential but only by power law corrections in �.
Similar considerations also apply to the quadratic po-

tential [n ¼ 2 in (11)–(13)], although the computational
technique is now different. Actually, solutions of (13) exist
in terms of triconfluent Heun functions HT , [21], �1ðyÞ ¼
AefHTðp;�3; q; zÞ þ Be�fHTðp; 3; q;�zÞ, where f ¼
�i�1=2½�þ ð2�Þ�1 � y2=3�y, p ¼ ð3ð4�Þ�2Þ2=3, q ¼
ð12�Þ1=3½�þ ð2�Þ�1� and z ¼ �ið2�1=2=3Þ1=3y.
Unfortunately no sufficient information on the asymptotic
behavior ofHT is available, to our knowledge, to determine
the normalizable solutions for complex �. Hence we use a
completely numerical scheme that extends to any potential
UðxÞ ¼ ajxjn, for which analytical solutions do not exist
when n � 3.
The calculations are straightforward and follow step by

step the theory we have previously summarized. First we
find, by numerical integration, a fundamental system of
solutions of (12), from which we determine �ð�Þ according
to (6). Some care must be used in taking the limit, that is
approached not in a monotonic but in an oscillating way, as
is evident by looking at the asymptotic leading terms of
(13): the convergence is increased by constructing the
sequence of the average points of pairs of nearby maxima
and minima, whose limit is searched with sufficiently high
absolute and relative precision. We then find the Weyl
functionmð�Þ from (7) and eventually, from (3), we deduce
the density of the states, see Fig. 2. The maxima of the first
four BW lines are displayed in Fig. 3. Starting from the odd
integers, that correspond to the nonrelativistic values, we
see that their spacing decreases both for increasing � and
�; the same effect has been observed for the relativistic
Landau levels [20], and it loosely seems to propose, in

1 2 3 4 5
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Ω = 0.3
Ω = 1.0

FIG. 1. The density of the states for the linear potential with
� ¼ 0:3, 1. The scale for � ¼ 0:3 must be multiplied by 102.
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FIG. 2. �ð�;�Þ for the quadratic potential.
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relativistic quantum mechanics, the usual relationship be-
tween circular and harmonic motion. We can also remark
that, as for the linear potential, the lowest resonance has a
central value that always remains near the nonrelativistic
value. The data of the higher resonances, instead, are well
fitted by decreasing exponentials in�, they approach each
other and their unequal spacing should be taken into ac-
count in the construction of quarkonium models. The right
part of Fig. 4 reproduces the width of the first BW reso-
nance vs�. According to what we said above, the plot can
give an estimate of the pair production for this case, not
treated by QED. Remark that the data are well approxi-
mated by a curve wð�Þ very similar to the production in a
constant field.

In conclusion, by using the possibilities offered by
quantum mechanics, we have proven the continuity from
the nonrelativistic discrete spectrum to the continuous
spectrum of the Dirac equation for an entire class of con-
fining potentials. The study of the density of the states

solves the apparent physical contradiction of the absence
of bound states, by substituting them with BW resonances
whose maxima give the relativistically correct metastable
levels. It is thus clarified also the extent to which the notion
of state can be used in model building. We have then shown
that the width of the resonances vs the interaction strength
reproduces very faithfully the pair production curve: this
gives an explanation of the Klein paradox for bound states
and it proposes a completely new and concrete way of
estimating the pair production for nonhomogeneous fields
where very little is known and active research is still in
progress.
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FIG. 4. Left plot: the width of the first resonance (diamonds)
compared with the pair production curve wfð�Þ (solid line).
Right plot: the width of the first resonance (circles) for a
quadratic potential. The solid line, giving a very good fit, is
wð�Þ¼�
�1 ln½1�expf�
=ð42�3=2Þg�, analogous to wfð�Þ.
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FIG. 3. The first BW maxima vs � for the quadratic potential.
Nonrelativistic bound states correspond to odd integers.
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