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Vortex dynamics in coherent ensembles of exciton polaritons (condensates) is studied in the framework
of the polarization-dependent Gross-Pitaevskii equation. Vortex lattices can be resonantly excited in the
polariton field by the interference of three or more optical pumps. Vortex-antivortex pairs can also appear
in polariton condensates due to scattering with disorder. The nonlinear vortex dynamics is characterized
by interactions of vortex cores and vortex-antivortex recombination.
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Introduction.—Recent discoveries of polariton Bose-
Einstein condensation (BEC) in planar semiconductor mi-
crocavities [1-3] have renewed the expectations of observ-
ing superfluidity in exciton-polariton systems [4]. One of
the manifestations of the superfluid phase transition in 2D
systems is the spontaneous appearance of vortex pairs at
any finite temperature and their dissociation at the transi-
tion point [5]. This makes the understanding of the mecha-
nisms of vortex formation and the dynamics of vortices in
polariton systems particularly important. Interestingly,
vortices may appear also in localized polariton condensates
due to the effect of the static potential disorder, as recent
experimental work has shown [6]. Moreover, different
mechanisms of vortex creation by resonant optical excita-
tion have been suggested [7,8].

As is well known, vortices also govern the physical
properties of type II superconductors. The triangular
Abrikosov lattices [9] appear when a magnetic field is ap-
plied to a superconductor. In this case, each vortex carries a
quantum of magnetic flux. Clearly, this effect cannot be
present in polariton superfluids, since these superfluids are
not charged. However, as we show in this Letter, lattices of
phase and polarization vortices similar to the Abrikosov
lattices can be excited in polariton fields. In contrast to the
Abrikosov lattices in superconductors, which are com-
posed of vortices with the same phase winding number,
the vortex lattices formed in polariton fields contain sub-
lattices of vortices with opposite winding numbers. This
sublattice structure leads to a peculiar dynamics for polar-
iton vortices and to attraction and recombination of vortex-
antivortex pairs.

We explore the possibility of creating vortex lattices by
the interference of several light beams, known in classical
optics [10]. Vortices or topological defects exist in linear
wave systems, in general, and in optics in particular [11—
14]. However, contrary to the case of linear singular optics,
vortices in polariton fields are affected by nonlinear spin-
dependent polariton-polariton interactions. Using the spin-
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dependent Gross-Pitaevskii equations we show that the
interactions stabilize the vortex lattices.

In general any topological defect in a coherent ensemble
of exciton polaritons (which we call a polariton conden-
sate) can be characterized by two winding numbers repre-
senting the change of phase and polarization of the order
parameter when one circles the vortex core. The elemen-
tary topological defect in a polariton superfluid is the half
vortex having semi-integer phase and polarization winding
numbers [15]. We show that half vortices appear if the
cavity is excited by three linearly polarized light beams
incident at oblique angles or due to the disorder scattering
of elliptically polarized polaritons.

Theory.—Because of the long coherence time of polar-
itons [16] and the fact that at low density they behave as
weakly interacting bosons [1], polariton dynamics can be
treated in the mean-field approximation, which leads to the
Gross-Pitaevskii (GP) equation [17,18]. This equation,
commonly used in the description of atomic Bose-
Einstein condensates [19-21], has been applied to semi-
conductor microcavities to describe several phenomena,
including the suppression of Rayleigh scattering by impu-
rities [17], the spatial structure of microcavity parametric
oscillator polaritons [22,23], the dispersion of polariton
superfluids [18], the Bose glass phase [24], and the inter-
ference of polariton condensates [25].

Polaritons have two possible spin projections on the
structure growth axis, o = *1, corresponding to the right
(o 4+) and left (o_) circular polarizations of external pho-
tons [26]. The spin-dependent GP equation is [27]:
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where the o polarized internal cavity polariton field, ¢,
depends on the spatial coordinate, r. The kinetic energy
operator Hyp represents the dispersion of polaritons. We
consider only lower branch polaritons from the strong
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light-matter coupling—the excitation of upper branch po-
lariton population is negligible since we consider a pump
resonant with the lower branch. 7 is the polariton lifetime.
W(r) represents a potential experienced by polaritons. a; ()
is the matrix element of polariton-polariton interactions in
the parallel spin(antiparallel spin) configuration, respec-
tively. It is well known that for 2D excitons and exciton
polaritons the interactions between polaritons of parallel
spin are repulsive («; > 0). The system is thus equivalent
to a self-defocusing Kerr medium in which stable optical
vortex solitons have been observed [28]. The exchange
interaction between polaritons dominates over the direct
one, and thus polariton-polariton interactions are spin-
dependent |a,| < ay, a, <0 [29-32]. The driving optical
pump field is given by p,(r, ) and E, is the pump energy.
The time dependence of p(r, r) allows for a pulsed exci-
tation, which we take as a Gaussian in time.

Vortex lattices.—We first study an ideal semiconductor
microcavity without disorder [W(r) = 0 everywhere]. As
two examples, we consider the case of excitation of polar-
itons by three and five optical pumps in equilateral geome-
try (Fig. 1). The pumps are assumed to be degenerate and
resonant with the lower polariton branch, all having the
same magnitude of in-plane wave vector.

For simplicity we first consider the excitation by cocirc-
ularly polarized pumps. In this case only phase vortices
with integer winding numbers are possible. In order to
study vortex dynamics we model excitation by a 5 ps
long optical pulse. Figs. 2 and 3 show the evolution of
the polariton intracavity field phase (that is, the argument
of ¢ ,—,) for the vortex lattices excited by three and five
pumps, respectively. The phase is measured relative to the
pump phase. In the linear regime (shown by left-hand
columns in Figs. 2 and 3) the optical pulse initially creates
a vortex lattice at + = 0 ps. In the case of a three-pump
excitation, the lattice is triangular and at first glance looks
similar to an Abrikosov vortex lattice in a type II super-
conductor. However, unlike the Abrikosov lattice it has an
internal structure composed of both vortices (winding

FIG. 1 (color online). Degenerate excitation of polaritons in
equilateral geometries with three pumps (a) and five pumps (b).
Each pump is assumed to be a Gaussian in wave vector space,
centered at the positions of the spots illustrated (the Gaussian
pumps are cocentered in real space).

number + 1) and antivortices (winding number —1). The
vortex and antivortex sublattices have a honeycomb sym-
metry. In time, vortices and antivortices are attracted and
annihilate each other due to ballistic motion of exciton
polaritons in the plane of the cavity. Vortices and antivor-
tices furthest from the pump-spot center (x = 0, y = 0)
recombine first.

The five-pump excitation allows one to create a Penrose-
like quasicrystal lattice [33] of vortices, which can also be
decomposed into vortex and antivortex sublattices. Melting
of the lattice and recombination of vortex-antivortex pairs
is again apparent at later times. In the nonlinear regime
(shown by right-hand columns in Figs. 2 and 3) the repul-
sion of polaritons caused by interactions leads to an ex-
pansion of the polariton distribution. A greater separation
between vortices and antivortices is thus apparent at any
given time in the nonlinear regime. This increases the
lifetime of the vortices and antivortices by suppressing
their recombination. Clearly, this dynamics is very differ-
ent to the Abrikosov vortex dynamics. In order to evidence
melting of the vortex lattices here and further we use a
polariton lifetime, 7, of 100 ps. This value, large compared
to typical ground state polariton lifetimes in planar cav-
ities, can be achieved in high Q-factor cavities for polar-
itons having large in-plane wave vectors at positive photon-
exciton detuning.

To observe half vortices [15] we now consider the
excitation of a vortex lattice using three transverse electric
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FIG. 2 (color). Evolution of the circularly polarized three-
pump vortex lattice phase in the linear (left) and nonlinear (right)
regimes. The times indicated are relative to the pulse arrival
time. Parameters: pump in-plane wave vector = 65.6 mm™ !,
polariton effective mass = 107> X free electron mass, pump
FWHM = 50 pm.
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FIG. 3 (color). Evolution of the circularly polarized five-pump
vortex lattice phase in the linear (left) and nonlinear (right)
regimes.

(TE) polarized pumps. The results in the nonlinear regime
are shown in Fig. 4. The presence of half vortices is
characterized by the displacement of the phase vortex cores
in the o and o_ polarized fields. In the linear regime (not
shown) the recombination of vortices and antivortices in
each polarization proceeds independently of the other po-
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FIG. 4 (color). Evolution of the TE polarized three-pump
vortex lattice phase in the nonlinear regime. Left column: o
phase; Right column: o_ phase. a, = —0.1«;.

larization. In the nonlinear regime the dominant repulsive
interactions between cocircularly polarized polaritons
causes an expansion of the polariton distribution, which
increases the average distance between vortices as in the
circularly polarized case.

Disorder and the natural generation of vortices.—
Although the simultaneous excitation of a microcavity by
multiple coherent beams is experimentally feasible [25],
the beam alignment can become increasingly more chal-
lenging as the number of beams increases. For this reason
we would like to highlight the possibility of creating
vortices using a single pump and exploiting the scattering
of polaritons with disorder. The disorder in microcavities,
caused by alloy and layer thickness variations in the nano-
structure, can be modeled by a continuous disorder poten-
tial, W(r) in Eq. (1), characterized by a Gaussian
correlation length and root mean squared amplitude [34].
The coherent and elastic scattering of polaritons with dis-
order effectively creates a field of superimposed waves
traveling in different directions. In the same way that a
field of multiple superimposed pumps with different direc-
tions of in-plane wave vectors contains vortices, the field
generated from scattering with disorder also contains vor-
tices as shown in Fig. 5. Although we have considered here
the nonlinear regime, it is important to realize that such
vortices would also appear in the linear regime and are thus
not related to the Berezinskii-Kosterlitz-Thouless phase
transition. Indeed the generation of dislocations upon scat-
tering from a rough surface has been evidenced in early
experiments in acoustics [11] and is an interesting current
topic in optics [35,36]. Very recently, the disorder induced
phase vortices have been observed in polariton condensates
[6]. The formation of half vortices, predicted to be elemen-
tary topological defects of polariton superfluids [15], can
be evidenced by polarization resolved interferometry.
Here, the anisotropic polariton-polariton interactions gen-
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FIG. 5 (color). Evolution of the phase of the polariton field
excited by a single circularly polarized pulse in a disordered
microcavity (nonlinear regime). Black contours illustrate the
distribution of polariton intensity. Disorder root mean squared
amplitude = 0.1 meV; Gaussian correlation length = 5 pm.
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FIG. 6 (color). Polarization texture of two half vortices gen-
erated by an elliptically polarized pulse in a disordered potential.
Ellipses show the path traced out by the electric field vectors
(shown by radii); black spots pinpoint half vortices.

erate an anisotropy in the evolution of the o, and o_
component fields leading to a separation of vortex loca-
tions in each polarization. The polarization and phase of
neighboring half vortices is shown in Fig. 6 by polarization
ellipses.

Conclusion.—Coherent fields of vortices and antivorti-
ces can be excited artificially in semiconductor microcav-
ities using multiple optical beams or via the scattering of
polaritons with disorder. The elementary polariton vortices
are half vortices, characterized by a change in the polar-
ization vector as well as the phase as one circles the vortex
core. Vortex dynamics can be summarized by the attraction
of vortices of opposite winding number and their annihi-
lation when they meet. The repulsive interactions between
polaritons cause a spreading of a polariton distribution,
which results in an associated separation of vortices and
antivortices. This increased separation delays their recom-
bination thus increasing the lifetime of a vortex lattice. The
study of the elementary properties of vortices is important
for the interpretation of experimental results; while the
lifetime of vortices is increased in the nonlinear regime
they cannot necessarily be associated with a Berezinskii-
Kosterlitz-Thouless phase transition. The experimental
creation of a vortex lattice could also see technological
application as a lattice of optical memory elements [37], if
one adopts the spin-dependent bistability [27] known in
semiconductor microcavities.
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