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An electron moving in a magnetically ordered background feels an effective magnetic field that can be

both stronger and more rapidly varying than typical externally applied fields. One consequence is that

insulating magnetic materials in three dimensions can have topologically nontrivial properties of the

effective band structure. For the simplest case of two bands, these ‘‘Hopf insulators’’ are characterized by

a topological invariant as in quantum Hall states and Z2 topological insulators, but instead of a Chern

number or parity, the underlying invariant is the Hopf invariant that classifies maps from the three-sphere

to the two-sphere. This Letter gives an efficient algorithm to compute whether a given magnetic band

structure has nontrivial Hopf invariant, a double-exchange-like tight-binding model that realizes the

nontrivial case, and a numerical study of the surface states of this model.
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Recent theoretical and experimental work has shown
that there exist nonmagnetic band insulators in which
spin-orbit coupling plays a role similar to that of the
magnetic field in the integer quantum Hall effect (IQHE).
In two dimensions [1], these ‘‘topological insulators’’ have
robust edge states, observed in HgTe=ðHg;CdÞTe hetero-
structures [2], and are predicted to show a spin quantum
Hall effect. The existence of a genuinely three-dimensional
topological insulator phase [3–5] with protected surface
states, recently observed in Bi0:9Sb0:1 [6], is rather surpris-
ing because the IQHE does not have a fully three-
dimensional version, but only layered versions of the 2D
case. Both 2D and 3D topological insulators are nonmag-
netic, and in fact unbroken time-reversal invariance is
required for the edge state to remain gapless. The edge or
surface states of topological insulators and IQHE states
exist because there are topological invariants that distin-
guish these insulating states from ordinary insulators, and
across a boundary between one of these states and an
ordinary insulator, the energy gap must close.

The goal of this Letter is to show that there are genuinely
three-dimensional (i.e., not layered) topological insulating
phases of electrons moving in a magnetic background. The
problem of electrons moving in such a background has
attracted considerable interest because of its relevance to
materials in which electrons from outer orbitals move in a
magnetic environment generated by the ordered magnetic
moments of core electrons. The outer-orbital electrons are
frequently described by tight-binding models in which the
hopping of an electron from site i to site j depends on its
initial and final spin and the nearby core spin configuration.
Several materials with layered kagome structures derived
from a parent pyrochlore lattice, such as Nd2Mo2O7 [7],
have been argued via this mechanism to show the quantum
anomalous Hall effect [8,9], in which electrons hopping in

a magnetic background form a two-dimensional integer
quantum Hall state. We give an explicit cubic-lattice model
with a nontrivial three-dimensional topological invariant
(the Hopf invariant in momentum space) and extended
surface states and discuss in closing which materials might
realize the ‘‘Hopf insulator’’ phase. This insulator is sim-
pler in some ways than the Z2 topological insulators, since
the minimal realization requires only two bands (counting
spin) rather than four [4]. We argue that pyrochlore-lattice
compounds with noncollinear magnetic order are realistic
candidates for Hopf insulators, and discuss specific mate-
rials in closing.
First, let us give a general introduction to topological

band insulators in any dimension. Consider a band insula-
tor in d dimensions with n filled bands andm empty bands.
In k space, such a band insulator is described by mþ n
dimensional matrix HðkÞ which has m positive and n
negative eigenvalues for any k (assuming EF ¼ 0).
Without changing the ground state, we may deform all
the positive eigenvalues to 1 and all the positive eigenval-
ues to �1. Thus HðkÞ has the form

HðkÞ ¼ WðkÞIm;nW
yðkÞ; (1)

where Im;n is the diagonal matrix withm 1’s and n�1’s on
the diagonal, andWðkÞ 2 SUðmþ nÞ. We see that for any
fixed k, HðkÞ is a point on the manifiold SUðmþ nÞ=Gm;n,

where Gm;n is a subgroup of SUðmþ nÞ that is formed by

the transformations that leave Im;n invariant. We find that

Gm;n ¼ SUðmÞ � SUðnÞ �Uð1Þ and
HðkÞ 2 SUðmþ nÞ=SUðmÞ � SUðnÞ �Uð1Þ � Mm;n:

So a band insulator is described by a mapping from the
Brillouin zone Td (a d-dimensional torus) to Mm;n. The

different classes of topological band insulators in d dimen-
sions are just classes of mappings Td ! Mm;n. Time-
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reversal invariance in fermionic systems (or other addi-
tional symmetries [10]) imposes additional restrictions that
can separate topological classes.

For two-band insulators, we have M1;1 ¼ S2. Mappings

from S3 ! S2 can be nontrivial (since the third homotopy
group �3ðS2Þ ¼ Z), and a familiar example to physicists is
the Hopf map:

� ! n ¼ �y��;

where �T ¼ ðz"; z#Þ and jz"j2 þ jz#j2 ¼ 1. The nontrivial

Hopf map S3 ! S2 implies that there can be nontrivial
mappings T3 ! S2. The corresponding two-band topologi-
cal insulators in three dimensions will be called Hopf
insulators; these insulators must break time reversal in
order to avoid Kramers degeneracies at time-reversal-
invariant points k ¼ �k in the Brillouin zone. Before
writing down a specific model of a Hopf insulator, we
review briefly the basic ideas of the Chern number and
the Hopf invariant and give an algorithm to compute the
Hopf invariant for any two-band model.

There are two equivalent ways to understand the Chern
number of a gapped 2D band structure with two bands, and
both are helpful in understanding the Hopf invariant in
three dimensions. Such a band structure is given by four
real, periodic functions of k: the Bloch Hamiltonians are

HðkÞ ¼ a1ðkÞ�x þ a2ðkÞ�y þ a3ðkÞ�z þ a4ðkÞ1: (2)

The fourth function a4ðkÞ plays no role in the topological
classification and is omitted in the following, since it only
shifts the energy levels, but can be experimentally impor-
tant in determining if a material is insulating. The gapless
condition is a1ðkÞ2 þ a2ðkÞ2 þ a3ðkÞ2 > 0. Let the compo-
nents of k run from �� to �. For each value of k, a
direction on the unit sphere is fixed by

n̂ðkÞ ¼ ða1ðkÞ; a2ðkÞ; a3ðkÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1ðkÞ2 þ a2ðkÞ2 þ a3ðkÞ2
p

: (3)

Now in two dimensions, the Brillouin zone has the topol-
ogy of the torus T2, and to classify band structures we need
to classify maps from T2 to S2. Because any map from the
circle to the sphere S2 can be contracted to a point, maps
from the torus to S2 are equivalent topologically to maps
from S2 to S2 [11]. These maps are classified by an integer
‘‘homotopy invariant’’ that generalizes the notion of wind-
ing number; it counts how many times the first sphere
wraps the second. Going back to the torus, the invariant is

n ¼
Z �

��
dkx

Z �

��
dkyjz; (4)

where the local current (to be used later in three dimen-
sions) is

j� ¼ 1

8�
����n̂ � ð@�n̂� @�n̂Þ: (5)

The same invariant may be more familiar in terms of the

ground state spinor j�ðkx; kyÞi. While this spinor has aUð1Þ
ambiguity, the ‘‘Berry flux’’
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is gauge invariant and equal to jz. For the three-
dimensional case, we need to use the classification of
maps from T3 to S2 found by Pontryagin [12].
The classification of two-band band structures in three

dimensions, i.e., maps from T3 to S2, is complicated be-
cause T3 includes three 2D tori, and each of these may have
a nontrivial Chern number. The guess that such a band
structure is classified by three Chern numbers, which if
nonzero give layered integer quantum Hall states, plus the
Hopf invariant is actually incorrect, and in fact maps from
T3 to S2 do not form a group. Here we will focus on the
case where the Chern numbers vanish and there is no
quantum Hall effect. Otherwise the Hopf invariant is no
longer integer-valued but takes values in the finite group
Z2�GCDðnx;ny;nzÞ for Chern numbers ni [12,13]. A geometri-

cal picture of the Hopf invariant is obtained by noting that
each point on S2 has a preimage that is a circle in T3, and
that the linking number of two such circles taken from
different points of S2 is just the Hopf invariant. For eval-
uating the invariant, it is easier to use the integral, follow-
ing Wilczek and Zee [14,15],

nh ¼ �
Z

d3kj �A: (7)

Here the gauge fieldA satisfies the magnetostatic equation
r�A ¼ j. This integral is invariant under a small varia-
tion �n̂ in (5) and hence a homotopy invariant.
The Hopf invariant is similar to theZ2 invariant or Chern

parity [16,17] in topological insulators in that its standard
integral expression uses the gauge-dependent quantity A
even though the final result (7) is gauge-invariant when the
Chern numbers are zero; alternately, one can use an ex-
plicitly gauge-invariant but nonlocal form [18]. The
Abelian Chern-Simons form that appears in the integrand
gives an invariant that is fully gauge-invariant (again, when
all Chern numbers are zero). One previous appearance of
the Hopf invariant in physics is in determining the statistics
of solitons in the nonlinear � model [14]; as an example, a
magnetic moment field n̂ðrÞ coupled to fermions can have
the statistics of its solitons changed by the Hopf term
generated by integrating out ‘‘fast’’ fermions coupled to
the field [19].
The Hopf invariant can be computed rapidly for any

two-band problem with zero Chern numbers. We compute
the Hopf invariant numerically by discretizing the torus in
real space to compute j, then Fourier transforming and
solving the magnetostatic equation in momentum space in
the discretized version of the gauge @�A� ¼ 0. This results

in an OðN logNÞ algorithm for N points on the Brillouin
zone grid. We studied a particular local tight-binding
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model as an example of nontrivial Hopf invariant, and
confirmed that it has the same Hopf invariant and vanishing
Chern numbers as the Hopf map to S2. Figure 1 shows the
resulting values of (7) for grids of different sizes for the
model

z" ¼ sinkx þ i sinky;

z# ¼ sinkz þ i

�

cosðkxÞ þ cosðkyÞ þ cosðkzÞ � 3

2

�

;

vi ¼ zy�iz; H ¼ v � �:

(8)

This model is constructed to be continuously connected to
the Hopf map, but with only low Fourier components and
hence a local tight-binding representation in real space. Its
Hopf invariant is þ1 (Fig. 1) and Chern numbers are zero.
It has an E $ �E symmetry [since a4 ¼ 0 in (2)] and no
states in the band gap �0:25<E< 0:25.

As a check, the hopping terms in the model (8) can be
reduced by a factor � while keeping the on-site �z term
fixed. This leads to a gapless region for approximately
0:63< �< 0:82. To confirm that this gap closing is asso-
ciated with a phase transition between the ordinary and
topologically nontrivial states, we computed the Hopf
invariant for different values of � (Fig. 1). In the compu-
tation of midgap surface states below, we also checked that
there are no midgap states for a boundary between two
slabs with �1 and �2 either both greater than or both less
than this gapless range, while the surface state appears
once one is above and one is below.

In real space, there are three terms in the tight-binding
Hamiltonian obtained by computing Fourier components
of (8): an on-site Zeeman interaction �13�z=4; a nearest-
neighbor spin-dependent hopping of strength 3�=2; and
length-2 spin-dependent hoppings of strength �=2. These
specific hoppings and the symmetry of (8) are not required
in order to ensure that the topological invariant takes the

value 1, and any change to the model that does not close the
gap will not change the topological properties. The topo-
logical invariant guarantees that a smooth (i.e., adiabatic)
boundary between a Hopf insulator such as (8) and vacuum
or a trivial insulator will have gapless excitations.
We find numerically that a gapless surface state still

exists even for (at least some) sharp boundaries, as in
integer quantum Hall and topological insulator states,
where a sharp boundary between materials of different
topological invariant generates an edge or surface state.
We computed numerically the midgap surface states in-
duced by abrupt boundaries in the (001), (010), and (100)
directions. In all cases we find gapless, dispersive surface
states from a single midgap band; there is a single Dirac
point except for the (001) direction, which has a ring of
gapless points (Fig. 2). Adding perturbations that break
particle-hole symmetry shifts the band-crossing energy by
different amounts for different points on this ring. It is not
clear that the surface state survives for all sharp surfaces,
but for the surfaces above, a midgap surface state appears
precisely when the Hopf invariant changes.

FIG. 1 (color online). Convergence of the numerical Hopf
invariant integral (7) to 0 or 1 as number of grid points increases.
The parameter � is the reduction of the hopping elements
relative to the on-site term in the model (8). The horizontal
axis is the linear size of the grid (Ntot ¼ N3

grid).
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FIG. 2 (color). (a) The lowest electron and hole bands with
sharp (001) surfaces in the model (8), for a 16-site-thick slab.
The Brillouin zone is �� � kx < �, �� � ky < �. The bulk

band gap is shown by the dotted lines at E ¼ �0:25, and the
spectrum is cut off at E ¼ �1:5. (b) 3D plot (kx, ky, E) of

midgap dispersion of (001) surface states near the � point.
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The extension to multiple bands is more subtle mathe-
matically for the Hopf insulator than for the IQHE or Z2

insulator. (Of course, extra bands that do not mix with the
Hopf-nontrivial bands will not modify consequences such
as the surface state.) In the IQHE, each band carries its own
integer invariant, with a zero sum rule over all the bands
[11]. In the Z2 insulator, each Kramers pair carries one Z2

invariant, again with a zero sum rule [4]. In these cases, the
physical state of an electronic system is determined by a
sum over the (possibly degenerate) occupied bands.
However, the generalization of the Hopf invariant, the
integration of the nonabelian Chern-Simons form, is gauge
dependent once there are degenerate occupied bands: the
integral of the nonabelian Chern-Simons form changes by
an integer under large gauge transformations.

The multiple-band problem is related to how disorder
affects Hopf insulators. For both Chern number and Chern
parity (the Z2 invariant of a noninteracting disordered
system [17]), each individual state or Kramers pair of a
large disordered sample can be assigned one invariant, and
the state is stable until nontrivial states ‘‘float’’ across the
Fermi level. If the surface state of the Hopf insulator is
stable to disorder, then the surface theory must contain
some topological invariant as in the 3D Z2 insulator’s
surface [20,21], unlike the 2D case where time-reversal
symmetry is sufficient [22,23]. Even if the surface state is
localized, as likely since there is no obvious surface topo-
logical invariant, it may still be observable by photoemis-
sion or tunneling experiments, or in clean samples.

The general requirements for a magnetic material to be
in the 3D Hopf insulator phase because of spin-orbit cou-
pling of itinerant electrons to a magnetic background are
similar to those required for the 2D quantum anomalous
Hall effect, believed to be relevant to the metallic frustrated
magnet Nd2Mo2O7 [7–9]. Noncollinear static magnetic
order of core electrons occurs in many 3D frustrated ma-
terials, including the parent pyrochlore lattice of the ka-
gome lattice that has primarily been studied [8,9] (the two-
dimensional kagome lattice is obtained as one layer from a
pyrochlore structure). Although the pyrochlore lattice, e.g.,
in ‘‘spin ice’’ compounds such as Dy2Ti2O7, may lack
long-range magnetic order, many pyrochlore compounds
spin-Peierls distort at low temperature into a lower-
symmetry phase with noncollinear order.

Hence a realistic microscopic model starts from local
Hund’s rule coupling of outer-orbital electrons to the mag-
netic order of a weakly distorted pyrochlore. Realization of
the specific cubic-lattice example discussed above seems
unlikely in a real solid, although it may be possible to
simulate this Hamiltonian using the tunable spin-
dependent hoppings of ultracold atoms in optical lattices.
An important future direction is to calculate the Hopf
invariant for effective band structures in frustrated mag-
netic compounds such as R2Mo2O7, R being a rare earth

ion. Experimental searches in such compounds for surface
states using photoemission or tunneling methods might
reveal the Hopf insulator state directly. Coupling of con-
duction electrons to complex magnetic order has also been
discussed in perovskite manganites [24].
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