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We address the nature of the Mott transition in the Hubbard model at half-filling using cluster
dynamical mean field theory (DMFT). We compare cluster-DMFT results with those of single-site
DMFT. We show that inclusion of the short-range correlations on top of the on-site correlations does
not change the order of the transition between the paramagnetic metal and the paramagnetic Mott
insulator, which remains first order. However, the short range correlations reduce substantially the critical
U and modify the shape of the transition lines. Moreover, they lead to very different physical properties of
the metallic and insulating phases near the transition point. Approaching the transition from the metallic
side, we find an anomalous metallic state with very low coherence scale. The insulating state is
characterized by the narrow Mott gap with pronounced peaks at the gap edge.
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The correlation driven metal-insulator transition (MIT)
is one of the most fundamental problems in condensed
matter physics, and continues to receive intensive atten-
tion. It is realized in numerous transition metal oxides and
some organic salts, by application of the pressure or iso-
valent chemical substitutions [1]. The metallic state far
from the transition is well described by the Fermi liquid
theory, illustrating the wavelike properties of electrons in
solids. In the insulating side, the electron behaves as a
localized particle. Near the transition, the effective
Coulomb repulsion between the carriers is of the same
order as the kinetic energy term in the Hamiltonian. This
regime probes the dual character of electron, namely, the
particle- and wavelike character, and requires a nonpertur-
bative method for its description.

The nature of the MIT depends strongly on the degree of
magnetic frustration. In the limit of very large magnetic
frustration, the insulating state is a simple paramagnetic
state with local moments carrying log(2) entropy. The me-
tallic state is a Fermi liquid with a very heavy mass. The
mass increases as the transition is approached to match the
large entropy of the frustrated paramagnetic insulator. This
is the essence of the Brinkman-Rice theory of the MIT,
which has been substantially extended by the single-site
DMEFT of the Hubbard model in the paramagnetic phase
[2]. The key predictions of this approach, such as the exis-
tence of a first order line ending in a second order Ising
point, and numerous high temperature crossovers, have
been verified experimentally [3]. The first order phase tran-
sition in a strongly frustrated situation has been confirmed
by cluster-DMFT studies [4,5] and by other techniques [6].

The completely unfrustrated case is also well understood
along the lines first drawn by Slater, and realized in the
half-filled one-band Hubbard model with only nearest
neighbor hoppings. Here, the MIT is driven by the long
range magnetic ordering. The system is insulating and
magnetic for arbitrarily small values of U, as a reflection
of the perfect nesting of the band structure.

0031-9007/08/101(18)/186403(4)

186403-1

PACS numbers: 71.27.+a, 71.30.+h

The character of the MIT with an intermediate degree of
frustration (when the long range magnetic order is fully
suppressed, but with strong short range magnetic correla-
tions) remains an open problem. This problem can be
addressed by a sharp mathematical formulation studying
the paramagnetic solution of the cluster-DMFT equations
of the Hubbard model, keeping the short range correlations
only. The early cluster-DMFT studies received conflicting
answers depending on different cluster schemes and differ-
ent impurity solvers [7,8]. However, by going to very low
temperatures using new algorithmic developments, we
completely settle this question.

Method.—To study this problem, we apply cellular dy-
namical mean field theory (CDMFT) [9,10] to the two-
dimensional Hubbard model, using plaquette as a reference
frame. In this formalism, the lattice problem is divided into
2 X 2 plaquettes and the lattice problem is mapped to an
auxiliary cluster quantum impurity problem embedded in a
self-consistent electronic bath. The latter is represented by
an 8 X 8 matrix of impurity hybridization A, which is
determined by the condition

Aliw) =iw + u — 2 (iw)

- [ziw +u - tcl(lg) - Ec(iw)]_l’ M

k

where 3., is the matrix of cluster self-energies, 7,(k) is the
matrix of tight-binding hoppings expressed in terms of the
large unit cell (2 X 2) of the cluster, and k runs over the
reduced Brillouin zone of the problem. We choose the two-
dimensional square lattice with only the nearest neighbor
hopping t.

The CDMFT approach has already given numerous in-
sights into frustrated models of kappa organics [4,11] as
well as the doping driven Mott transition in the Hubbard
model, when treated with a variety of impurity solvers [12].
In this Letter, the auxiliary cluster problem is solved with

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.101.186403

PRL 101, 186403 (2008)

PHYSICAL REVIEW LETTERS

week ending
31 OCTOBER 2008

the numerically exact continuous time
Monte Carlo (CTQMC) method [13,14].

Results.—Fig. 1(a) shows the phase diagram of the
Hubbard model within cluster DMFT at half-filling in the
absence of long range order. For interaction strength U <
U (T), we find a metallic solution while for U > U,,(T), a
Mott insulating solution exists. The two transition lines
U, (T) and U, (T) cross at a second order endpoint, at
temperature Tyt ~ 0.09¢ and interaction strength Uyt ~
6.05z. It is clear that one of the most salient features of the
single-site DMFT phase diagram [shown in Fig. 1(b)],
namely, the existence of a first order phase transition,
survives in plaquette DMFT.

Still there are substantial modifications to the single-site
DMFT results when U/t is close to its critical value.
Namely, (i) Strong short ranged antiferromagnetic correla-
tions significantly reduce the value of critical U at which
the second order endpoint occurs. Note that the plaquette-
DMEFT critical U(~6.051) is in very favorable agreement
with the Monte Carlo crossover U at which the pseudogap
develops at intermediate temperatures accessible by deter-
minantal Monte Carlo calculations (Fig. 5 in Ref. [15]).
This critical U will increase if the system is more frustrated
at short distance. For example, the inclusion of the next
nearest hopping ' has this effect and was studied in
Ref. [16]. (i1) The shape of the coexistence region, where
both metallic and insulating solutions exist, is significantly
different. The high temperature crossover lines (dashed
line above T ~ 0.1¢ in Fig. 1) are similar since at high
temperature the entropy of the paramagnetic insulator is of
the order of log(2) in both cluster and single-site approach.
As the temperature is increased, the large entropy insulat-
ing state wins over the lower entropy metallic state. At low
temperature, the situation is very different. In single-site
DMFT, the metal wins at low temperature in the transition
region because the emergence of the itinerant quasiparticle
inside the Mott gap lowers the free energy of the strongly
disordered Mott state. In the cluster case, the Mott insulator
at very low temperature is very different and has small
entropy due to short range singlet formation. The small
entropy of this state can be confirmed by the “valence
histogram” shown in the inset of Fig. 1(a). The high
temperature insulating state, which has entropy of the order
of log(2), populates many states of the plaquette with
significant probability. In contrast, there is only one sig-
nificant eigenvalue of the density matrix in low tempera-
ture, corresponding to the singlet state. The insulating
phase at low temperature has thus very small entropy,
and the bad metal has larger entropy; hence, decreasing
temperature favors insulator over metal. The actual first
order line (dashed line in Fig. 1(a) inside the coexistence
region, where the free energy of the two phases equals)
therefore bends back and critical U decreases with decreas-
ing temperature. It is apparent that the zero temperature
transition in cluster DMFT happens at U, and not at U,
as in DMFT.

quantum

plaquette
0.25 a) e
T/t=0.01 T/t=0.3
0.20 °
- 0.15 Bad H Bad
= metal insulator
0.10f hd
. U MIT .
Fermi Paramagnetic
0.05 liquid U, insulator
0.00 *
20.2 -0.1 0.0 0.1 0.2
U,/t
single site
0.25¢ b)
0.20f R
~ 015 Bad Bad
= metal insulator
0.10 ®
Fermi Paramagnetic
0.05 ermi insulator
liquid
004201 0.0 0.1 0.2

FIG. 1 (color online). (a) The phase diagram of the paramag-
netic half-filled Hubbard model within plaquette CDMFT. Inset:
The histogram of the two insulating states. It shows the proba-
bility for a given cluster eigenstate among the 16 eigenstates of
the half filled plaquette. The singlet plaquette ground state has
the highest probability. (b) For comparison, the corresponding
phase diagram of the single-site DMFT (using the same 2D
density of states) is shown. The coexistence region is shown as
the shaded region. The dashed line marks the crossover above
the critical point. The crossover line was determined by the
condition that the imaginary part of the self-energy at few lowest
Matsubara frequencies is flat at the crossover value of U. For
easier comparison, the x axis is rescaled and the reduced value of

U, = % is used. The critical value of U is Uyyr = 6.05¢ in
the cluster case and Uppr = 9.35¢ in the single-site case.
Pentagons in panel (a) mark the points in phase diagram for

which we present the local spectral functions in Fig. 2.

While the shape of the DMFT phase diagram strongly
resembles the phase diagram of the Cr-doped V,0;, the
reentrant shape of the cluster-DMFT transition resembles
more the k-organic diagram [17] as pointed out in Ref. [4].

To understand the effects brought about by the short
range magnetic correlations near the transition, we focus
on the local spectral functions displayed in Fig. 2. As in
single-site DMFT, below U, [Fig. 2(a)] the system is a
normal Fermi liquid with a reduced width of the quasipar-
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ticle peak (Z ~ 0.4) and well developed Hubbard bands
around —2.5¢ and 2.5¢.

The insulator in the coexistence region [Fig. 2(b)] is,
however, very different than the Mott insulator in single-
site DMFT. The Mott gap is small and it vanishes at U,
where the insulating solution ceases to exist. At low tem-
perature very pronounced peaks at the gap edge appear.
These peaks are a clear hallmark of the coherence peaks
characteristic of a Slater spin density wave.

With increasing U above U, [Fig. 2(d)] the Mott gap
increases but the peaks at the gap edge remain very pro-
nounced. Only at very large U comparable to the critical U
of the single-site DMFT they lose some of their strength
and dissolve into a featureless Hubbard band.

The metallic state, which competes with the insulator in
the coexistence region, [Fig. 2(c)] has similar width of the
quasiparticle peak as the Fermi liquid state at U < U,;.
Hence the quasiparticle renormalization amplitude, as ex-
tracted at finite but low temperature 7 = 0.01¢ is rather
large. On the other hand, this metallic solution has some-
what reduced height of the quasiparticle peak which is
mostly due to incoherent nature of the solution.

The incoherence can also be identified from the raw data
on the imaginary axis. In Fig. 3 we show the imaginary
self-energy for the different cluster momenta K, which can
be thought as the orbitals of the multiorbital model asso-
ciated with the cluster. In plaquette geometry, the self-
energy is diagonal in the cluster momentum base and the
on-site, nearest-neighbor, and next-nearest-neighbor self-
energies can be constructed as the linear combination of
these orbital self-energies [12].

Below U4, the self-energies of all four orbitals are very
similar and results are close to the single-site DMFT. The
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FIG. 2 (color online). The local spectral function for four
representative values of U/ts and temperature 7 = 0.01¢ marked
by pentagons in Fig. 1. (a) For U below U, the system is in
Fermi liquid regime with rather large coherence temperature.
(b) In the coexistence region, the insulating solution has a small
but finite gap (~0.2¢). (c) The metallic solution in the same
region is strongly incoherent and the value at zero frequency
decreases due to the finite scattering rate [see self-energy in
Fig. 3(a)]. (d) For U above U, the Mott gap steadily increases
with U.

metallic phase in the coexistence region Fig. 3(c) has a
large scattering rate in the (7r, 0) orbital, in the orbital
which contributes most of the spectral weight at the fermi
level. The coherence scale in this strongly incoherent metal
is thus severely reduced. The scattering rate as a function
of temperature is not quadratic even at 7 = 0.01¢ and
remains large ~0.2¢ at that temperature.

In Figs. 3(b) and 3(d) the Mott insulating state can be
identified by the diverging imaginary part of the X, ) (iw).
Because of particle-hole symmetry, the real part of the
same quantity vanishes. Therefore, the only way to open
a gap in the single particle spectrum is to develop a pole at
zero frequency 3, () = C/(iw). We checked that the in-
sulating state in the coexistence region has the character-
istic 1/(iw) behavior at very low temperature and the
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FIG. 3 (color online). Top: The imaginary part of the cluster
self-energies for the same parameters as in Fig. 2. Because of
particle-hole symmetry, the (7, 77) and (0, O) cluster self-
energies have the same imaginary part and we show only one
of them. Below the MIT shown here in (a), the momentum
dependence of the self-energy is rather weak and the cluster
solution is very similar to the single-site DMFT solution. In the
coexistence region, the metallic solution shown here in (c) is
strongly incoherent especially in the (7, 0) orbital. For the
insulating solutions in (b) and (d), the (7, 0) scattering rate
diverges which opens the gap in the spectra. bottom:
(e) ReX(07) — o as a function of U. Because of particle-
hole symmetry, ReXg_(, 0 — u vanishes.
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FIG. 4 (color online). The quasiparticle residue Z vs U/t for
different orbitals in CDMFT. Below the transition point, the (0,
0) and (77, ) orbitals have essentially the same Z as single-site
DMEFT (dotted line) while the quasiparticles are more renormal-
ized in the (77, 0) orbital.

coefficient C in the coexistence region decreases as U
decreases. The closure of the gap at the U, transition point
is confirmed by the vanishing of C at that point.

The other two orbitals expel their Fermi surfaces by a
different mechanism; namely, the real parts of the self-
energy are such that the effective chemical potential
Merr = o — 2(07) moves out of the band. The separation
of the two orbitals gradually increases as U increases, and
it jumps at the critical U showing the hysteresis behavior
displayed in Fig. 3(e).

The important issue in the MIT is whether the short
range magnetic exchange in the Hubbard type of models
allow the Brinkman-Rice scenario of diverging effective
mass. In Fig. 4 we plot the quasiparticle renormalization
amplitude Z of the four different orbitals of the plaquette.
As shown in Fig. 4, the growth of the effective mass in
cluster DMFT is cutoff by the exchange interaction and the
spatial coherence is lost way before the quasiparticles ac-
quire a large effective mass. The lattice Zy is a linear com-
bination of the two values plotted in Fig. 4. The quasipar-
ticles at (7, 0) and (0, 7r) are renormalized more strongly
than those away from the two points. More importantly,
close to U,;, where the system is still coherent at T =
/100, the quasiparticle renormalization amplitude is
rather large for the plaquette without frustration (Z ~
0.36). Very near and inside the coexistence region, the me-
tallic state remains very incoherent at our lowest tempera-
ture T = t/100. We therefore cannot determine the low
energy Z which might vanish at U, at zero temperature.

In conclusion, we used essentially an exact numerical
method, CTQMC simulations, and clarified the nature of
the Mott transition in plaquette-DMFT. The short range
correlations which are accounted for in this study but are
absent in single-site DMFT do not change the order of the
Mott transition which remains first order with coexistence
of metallic and insulating solution. Our cluster-DMFT

study predicts the existence of the anomalous metallic state
within the coexistence region with very low coherence
temperature. This regime could be relevant to the interpre-
tation of experiments in VO, [18] and PrNiOs under the
applied pressure [19] where an anomalous metallic state
was reported. On the theoretical side, the plaquette DMFT
brings new light on the nature of the interaction driven
MIT. The cluster DMFT of this problem retains aspects of
Mott physics, as described in single-site DMFT, and Slater
physics. It does that by having two orbitals [(7r, 0) and (0,
)] exhibit a Mott transition while the remaining orbitals
[(0, 0) and (7r, 7r)] undergo a band transition. This Slater-
Mott transition requires momentum space differentiation
and has no analog in single-site DMFT.
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