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Using the unrestricted Hartree-Fock approximation and Landau theory we identify possible phases

competing with superconductivity in FeAs layers. We find that close to half-filling the transition from the

paramagnet to the magnetically ordered phase is first order, making anharmonicities relevant and leading

to a rich phase diagram. Between the already known one-dimensionally modulated magnetic stripe phase

and the paramagnet we find a new phase which has the same structure factor as the former but in which

magnetic moments at nearest-neighbor sites are at right angles making electrons acquire a nontrivial phase

when circulating a plaquette at strong coupling. Another competing phase has magnetic and charge order

and may be stabilized by charged impurities.
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Exotic superconductivity often appears in a phase dia-
gram region where a uniform paramagnetic (PM) phase
competes with charge or magnetic order. Examples are the
heavy fermion compounds [1], organics [2], vanadium
bronzes [3], transition-metal chalcogens [4], and barium
bismuthates [5,6]. A competing phase is believed to play
an important role in Cu-based high temperature supercon-
ductors probably with charge and magnetic order [7]. One
important question is if the competing phase is only detri-
mental for superconductivity [8] or if its vicinity helps
superconductivity [9–12].

In the recently discovered Fe-based superconductors
[13–15], the Coulomb interaction is believed to be rela-
tively weaker than in cuprates making a mean-field analy-
sis more likely to lead to a quick identification of the
possible competing phases. Indeed first-principles compu-
tations [16] have predicted a magnetic stripe (MS) phase
with ordering wave vector (�, 0) (we define wave vectors
for an isolated FeAs layer with the primitive vectors con-
necting nearest Fe sites and Fe-Fe distance a � 1) which
later has been found by magnetic neutron scattering in two
different families of compounds [17,18].

Here we extend the analysis using the unrestricted
Hartree-Fock (HF) approximation in a model Hamilton-
ian which keeps only two orbitals supplemented with a
Landau theory analysis. This allows more flexibility than
first-principles computations to identify possible compet-
ing phases at the expense of more (yet) unknown parame-
ters. Surprisingly, we find a new magnetic phase in which
magnetic moments at nearest neighbor sites are at right
angles which we term orthomagnetic (OM). This is inter-
esting in its own because well-formed magnetic moments
usually lead to phases in which magnetic moments are
either mutually parallel or antiparallel [19,20]. We iden-
tify another competing phase which has both spin and
charge order (SCO) reminiscent to the stripe phases of

cuprates. This phase may be locally stabilized by charged
impurities.
Our starting point is the two-orbital Hamiltonian H ¼

H0 þHint [21–24] with the noninteracting part (here writ-
ten in momentum space)

H0 ¼
X
k��

"�ðkÞdyk��dk��

þX
k�

"xyðkÞðdykx�dky� þ dyky�dkx�Þ;

"xðkÞ ¼ �2t1 cosðkxÞ � 2t2 cosðkyÞ � 4t3 cosðkxÞ cosðkyÞ;
"yðkÞ ¼ �2t2 cosðkxÞ � 2t1 cosðkyÞ � 4t3 cosðkxÞ cosðkyÞ;
"xyðkÞ ¼ �4t4 sinðkxÞ sinðkyÞ (1)

where dyk�� creates an electron in orbital d�z in momentum

space with � ¼ x, y. The interaction part includes an intra-
and interorbital repulsion and a Hund coupling term (here
defined in real space):

Hint ¼ U
X
i�

ni�"ni�# þU0X
i

nixniy � 2J
X
i

Six � Siy

with ni�� the occupation operator for orbital�with spin�,
ni� � ni�" þ ni�#, and Si� the spin operator. We neglect

the small spin-orbit coupling [25] so the Hamiltonian is
rotationally invariant in spin space. We also considered a
pair hopping term and found that does not affect our mean-
field results [24]. In the following we adopt the hopping
parameters from Ref. [24] and we define the intraorbital
repulsion by the standard relationU0 ¼ U� 3J=2 and J ¼
0:25U for definiteness.
Phases were identified using a fully unrestricted HF

approximation in large clusters (typically 14� 14) with
periodic boundary conditions. Subsequently the energy of
each solution has been computed in much larger systems
treated in momentum space. In the latter case we neglected
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a small canting of the MS solution which has a negligible
effect on the energy.

In the upper panel of Fig. 1 we show the resulting phase
diagram of the two-orbital model in the U-density plane at
zero temperature. The solid circle is a tricritical point: to
the left of it the transition is weakly first order whereas to
the right it is second order. Between the MS and the PMwe
find the new OM phase in which magnetic moments at
nearest-neighbor sites are at right angles as shown in the
inset of the upper panel of Fig. 1. It can be seen as the
superposition of two magnetic stripes perpendicular to
each other. The magnetization at position Rl reads

m l ¼
X2
i¼1

Mi expðiQi �RlÞ (2)

with Q1 � ð0; �Þ, Q2 � ð�; 0Þ and M1, M2 mutually per-
pendicular and equal in modulus. The MS is recovered by
setting one of the Mi in Eq. (2) to zero.

The first-order character of the transition close to half-
filling is not surprising given that the model is quite frus-
trated from the magnetic point of view [26]. Increasing U
the system can avoid frustration by staying in the PM phase
until the point in which the energy penalty of not forming
magnetic moments becomes too large driving the system
through the abrupt transition to a magnetic phase.

We find the topology of the phase diagram shown in
Fig. 1 to be rather robust, although for some parameters
[23] the tricritical point becomes a triple point. Even more,
we find essentially the same topology in a standard one-

band Hubbard model supplemented with an explicit anti-
ferromagnetic next-nearest-neighbor magnetic interaction
J0 across the diagonals. The latter frustrates the usual Néel
state and favors the magnetic instability at Qi.
The larger stability of the OM phase compared to theMS

at half-filling is due to the fact that this two-dimensional
texture opens gaps in the electronic structure in both x and
y directions whereas the MS in weak coupling leaves the
direction parallel to the stripes metallic. Therefore a more
stable fully gaped (insulating) solution is found for a
weaker coupling in the OM case than in the MS case.
This is illustrated in the lower panels of Fig. 1 where we
show the density of states (DOS) for both solutions and
U ¼ 0:8 eV. For smaller U both solutions are metallic but
the OM state has a deeper pseudogap.
The dips in the OM DOS close to 1=4 filling and 3=4

filling can be understood in strong coupling as due to the
fact that as an electron from the lower (upper) Hubbard
band circulates a plaquette, the HF potential forces its spin
to be parallel (antiparallel) to the local direction of the
magnetization. Thus after a complete loop the electron spin
gets back to the original direction but the single particle
wave function acquires a phase ei� ¼ �1 reminiscent of
the staggered flux phase in cuprates [27,28]. This produces
a conelike dispersion and a semimetallic DOS which
evolves into the dips in weak coupling.
More insight on the phase diagram can be obtained with

the following Landau toy model in terms of the Fourier
transform of the magnetization:

�f ¼ 1

2

X
q

��1ðqÞmq �m�q

þ �1

X
q1:::q4

ðmq1
�mq2

Þðmq3
�mq4

Þ�q1þq2þq3þq4;0

þ �1

X
q1:::q6

ðmq1
�mq2

Þðmq3
�mq4

Þðmq5
�mq6

Þ

� �q1þq2þq3þq4þq5þq6;0: (3)

It consists of a Gaussian part and a local interaction part
which we keep up to sixth order to be able to describe both
second- and first-order phase transitions. We assume that
the susceptibility �ðqÞ diverges, for a set of symmetry
related momenta Qi, at an instability line controlled by
the parameter � � ��1ðQiÞ and take �1 > 0 for stability.
The non-Gaussian vertices have been taken as momentum
independent in the same spirit of Ref. [29]. This will be
partially relaxed below.
For �1 > 0 the above model describes an ordinary

second-order magnetic phase transition as � crosses the
Gaussian line� ¼ 0. For�1 < 0 there is a first-order phase
transition with a tricritical point at ð�1; �Þ ¼ ð0; 0Þ. This
can be treated analogously to the liquid-solid transition
[30] and frustrated phase separation [31]. Crucially, the
non-Gaussian terms may favor magnetic textures build by
the superposition of several harmonics. As in Refs. [30,31],
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FIG. 1 (color online). Upper panel: T ¼ 0 phase diagram of
the two-orbital model in the U-density plane. The solid circle is
the tricritical point. The insets shows the magnetic structure of
the ordered phases considered in this study. Lower panels: The
local HF DOS for the MS and OM states.
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to minimize the energy we restrict the sums in Eq. (3) to the
Qi set. The magnetic texture is formed by subsets which
satisfy the Kronecker delta of the quartic term modulo a
reciprocal lattice vector. Only two choices are possible:
either all the qi are the same and equal to one Qi which
leads to the MS or the qi are equal in pairs to one of theQi.
In the latter case we still have to choose the relative angle
between the two vectorial Fourier components Mi at Qi

[c.f. Eq. (2)] and their magnitudes, Mi [32]. For two-
dimensional textures we find that the energy is locally
minimized when the magnitude of the two amplitudes is
the same and the angle between the two Fourier compo-
nents is either �=2 (which leads to the OM state) or zero.
The latter is a new phase in which the real space magne-
tization is zero in one sublattice and forms an antiferro-
magnetic structure in the other sublattice. This is the only
phase we have found in which the modulus of the magne-
tization is not uniform (labeled SCO in the inset of Fig. 1).
Since the charge density is a scalar, it couples with the
square of the magnetization. It follows that this phase will
have SCO reminiscent of the charged stripe phases in
cuprates [7]. In the present case the charge ordering wave
vector is (�,�). In the following, for simplicity, we neglect
the effect of the charge relaxation upon the energy, which
in any case does not affect the quadratic terms. Indeed we
find in HF that this effect is small.

Calling MT the magnitude of the magnetization in real
space, we find that the MS and the OM phase have the same
energy [33] given by �fOM;MS ¼ �M2

T=2þ �1M
4
T þ

�1M
6
T while for the SCO phase �fSCO ¼ �fOM;MS=2.

These energies are easily rationalized from the fact that
the non-Gaussian terms in Eq. (3) are local in real space
and in the SCO state only half of the sites are magnetized
(c.f. inset in Fig. 1).

The phase diagram is shown in Fig. 2(a). The dashed line
is the limit of metastability of the magnetic phases. The
insets show the behavior of f in the metastable regions.
The 1=2 factor in the energy makes the MS and OM
configurations more stable than the SCO configurations
in the ordered region. As soon as the phase boundary is

crossed and one reaches the PM phase the situation is
reversed. The lowest energy phase above the PM is the
‘‘hidden’’ SCO phase. Proximity of the paramagnet to this
phase is suggestive in view that the charge ordering is
similar to the one in BaBiO3 which becomes superconduct-
ing when doped [5,6].
In the restricted HF approximation for the parameters of

Ref. [24] and positive doping we have found that the PM-
SCO transition is second order; thus, the SCO phase cannot
become metastable as in the Landau toy model, but of
course this is sensitive to the parameter set. For other
parameters [23] we have even found a region of SCO phase
in the phase diagram at high doping.
The Landau toy model phase diagram is oversimplified

and does not even reproduce the full physics of the HF
phase diagram. One can construct a canonical Landau
theory as follows. First the magnetization is written as
the sum of products of slowly varying parts MiðRÞ times
rapidly varying parts expðiQi �RlÞ. The energy can be
expanded close to the Gaussian line in terms of the invar-
iants generated by the MiðRÞ and its gradients. We are
interested in uniform phases so we neglect the spacial
dependence of the order parameters Mi reaching Eq. (2).
We have two second-order invariants Ii � Mi �Mi. The

fourth-order invariants are powers of the second-order ones
and I3 � ðM1 �M2Þ2 and I4 � ðM1 �M2Þ � ðM1 �M2Þ.
The latter can be eliminated since it depends on the other
invariants through the relation I3 þ I4 ¼ I1I2.
The energy can be written as

�F¼1

2
�
X2
i¼1

Mi �Miþ�1

X2
i¼1

ðMi �MiÞ2þ�2ðM1 �M2Þ2

þ�3ðM1 �M1ÞðM2 �M2Þþ�1

X2
i¼1

ðMi �MiÞ3

þ�2ðM1 �M2Þ2
X2
i¼1

Mi �Mi

þ�3½ðM1 �M1ÞðM2 �M2Þ2þðM1 �M1Þ2ðM2 �M2Þ�:
(4)

In this case the energy of the different phases is

�fMS ¼ �

2
M2

T þ B1M
4
T þG1M

6
T;

�fOM ¼ �

2
M2

T þ B2M
4
T þG2M

6
T;

�fSCO ¼ 1

2

�
�

2
M2

T þ B3M
4
T þG3M

6
T

�
;

withB1¼�1,B2¼ð2�1þ�3Þ=4,B3¼ð2�1þ�2þ�3Þ=8,
G1 ¼ �1, G2 ¼ ð�1 þ �3Þ=4, G3 ¼ ð�1 þ �2 þ �3Þ=16.
The parameters of the model can be fixed by comparing

observables with experiment. One can consider the former
to be a function of two or more control parameters (like U,
doping, P, and T). Taking two control parameters for
simplicity, each ordered phase considered alone can have
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FIG. 2 (color online). Phase diagram for the Landau toy model
(a) and the full Landau model (b). The dashed line is the limit of
metastability of the ordered phases. The limit of metastability of
the PM phase is given by the line � ¼ 0. The thick lines
represent weakly first-order transitions ending at the tricritical
point. The insets show the behavior of the energy for the
magnetic phases (full line) and the SCO phase (dashed line) in
the regions of metastability.
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a different tricritical point with the paramagnet. If instead
all phases are allowed to compete, depending on parame-
ters one can have more complex phase diagrams including
triple points. It is interesting that for temperature driven
transitions both first- and second-order transitions have
been observed, depending on the material [34], which
suggests proximity to a tricritical point.

Given the local character of the electronic interactions,
we expect the parameters to be not far from those of the
Landau toy model Eq. (3), which corresponds to Bi ¼ �1,
Gi ¼ �1. Indeed one can obtain the same topology as in
HF taking B1 ¼ �1, B2 ¼ 1:07�1, B3 >maxð0; �1=2Þ,
G2 ¼ 1:1�1, and G1 ¼ G3 ¼ �1 [c.f. Fig. 2(b)].

The four phases identified (PM, OM, MS, SCO) are the
only phases allowed by the model Eq. (4); thus, our study is
exhaustive close to the Gaussian line (which for the first-
order region means close to the tricritical point). The
exceptions are special combinations of parameters where
a family of solutions become degenerate as in the Landau
toy model [33]. Canting of the magnetic moments respect
to the identified solutions require higher order terms in the
Landau free energy.

It is easy to check that the structure factor averaged to
take into account a superposition of randomly oriented
domains is the same for the OM and MS phases; thus, in
principle, it can be difficult to distinguish among them with
a magnetic neutron scattering experiment alone on poly-
crystalline samples. In practice, nuclear neutron scattering
detects also a lattice distortion which breaks the C4v sym-
metry of the lattice and most likely stabilizes the MS
[17,26]. It is possible that the OM state can be stabilized
suppressing the structural transition by pressure or chemi-
cal substitution.

The SCO phase may be locally stabilized by charged
impurities. We expect the concomitant spin and charge
order to appear around charged nonmagnetic impurities,
which may be observed with local probes like NMR,
nuclear quadrupole resonance, Mössbauer, and scanning
tunneling spectroscopy.

In conclusion, we have exhaustively analyzed possible
magnetic phases competing with superconductivity in
FeAs layers close to the Gaussian instability line of the
paramagnet. Because of magnetic frustration we find a
tendency for PM-magnetic transitions to be first order as
shown in the HF approximation. Contrary to general be-
liefs the two-orbital minimal model [24] does not show the
MS phase close to half-filling. Instead we find a new phase
in which magnetic moments acquire an unusual orthogonal
configuration. We find another low energy phase with spin
order and charge order at momentum (�, �) which pro-
vides an obvious link among charge fluctuations, possibly
relevant for superconductivity, and magnetism. Our results
provide a guide of likely configurations to be found in the

phase diagram of layered FeAs based compounds and a
Landau framework to study them.
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