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The correlations of an n-partite quantum state are classified into a series of irreducible k-party ones

(2 � k � n), with the irreducible k-party correlation being the correlation in the states of k parties but

nonexistent in the states of (k� 1) parties. A measure of the degree of irreducible k-party correlation is

defined based on the principle of maximal entropy. Adopting a continuity approach, we overcome the

difficulties in calculating the degrees of irreducible multiparty correlations for the multipartite states

without maximal rank. In particular, we obtain the degrees of irreducible multiparty correlations in the

n-qubit stabilizer states and the n-qubit generalized Greenberger-Horne-Zeilinger states, which reveals the

distribution of multiparty correlations.
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Introduction.—How to classify and quantify correlations
in a multipartite quantum state is a fundamental problem in
many-particle physics and quantum information science.
Traditionally, this is done by introducing correlation func-
tions between or among experimental observables of dif-
ferent parties. A modern method of characterizing those
correlations is based on entropy, in which different types of
correlations in a multipartite state are regarded as different
types of nonlocal information, and entropy is used as a
measure of information [1].

The concept of irreducible n-party correlation in an
n-partite quantum state was first proposed in Ref. [2] by
Linden et al. based on the principle of maximum entropy.
This concept describes how much more information in the
n-partite state than what is already contained in its reduced
states of ðn� 1Þ parties. The degree of irreducible two-
party correlation in a bipartite quantum state is equal to the
two-party mutual entropy [2], which is also obtained in
different contexts [3,4]. Among n-qubit pure states, the
irreducible n-party correlation is nonzero only for the
Greenberger-Horne-Zeilinger (GHZ) type pure states [5].
Most n-partite pure states are completely determined by
their reduced states of just over half the parties [6,7].

It is worth pointing out that the idea of using the maxi-
mum entropy principle to quantify classical correlation has
developed independently in the classical information com-
munity [8–10]. Remarkably, the connected information of
order k (2 � k � n) for a probability distribution of n
classical variables was defined in Ref. [8] by Schneidman
et al.

In this Letter, we define a measure for the degree of
irreducible k-party correlation in an n-partite state. This
definition can be regarded as not only a direct general-
ization of the concept in Ref. [2], but also a quantum
version of connected correlation of order k in Ref. [8].

The measure of the degree of irreducible k-party corre-
lation we define relies on a constrained optimization prob-

lem over n-partite quantum states. Its explicit calculation
for a general n-partite state (n > 2) is quite challenging,
even for a 3-qubit state. To the best of our knowledge, no
explicit calculations for irreducible multiparty correlations
exist in the available literature.
The main purpose of this Letter is to calculate the

degrees of irreducible multiparty correlations for the multi-
partite states without maximal rank based on a continuity
approach. We obtain analytic results for the degrees of
irreducible multiparty correlations of the stabilizer states
[11–13] and the generalized GHZ states [5].
Notation and definitions.—Let ½n� be the set

f1; 2; . . . ; ng. An m-element subset of ½n� is denoted as
aðmÞ ¼ fa1; a2; . . . ; amg, and the relative complement of
aðmÞ in ½n� is denoted as �aðn�mÞ ¼ f �a1; �a2; . . . ; �aðn�mÞg.
The state of an n-partite quantum system is specified by

an n-partite density matrix �½n�. The irreducible k-party
correlation (2 � k � n) in the state is defined as the infor-
mation appearing in the k-partite reduced density matrices

�aðkÞ, but nonexistent in the ðk� 1Þ-partite reduced density
matrices �aðk�1Þ. To define a measure for the degree of

irreducible multiparty correlation in the state �½n�, we

introduce an n-partite density matrix ~�½n�
l for l ¼

1; 2; . . . ; n as

~� ½n�
l ¼ argmaxfSð�½n�Þ: �aðlÞ ¼ �aðlÞg (1)

for any subset aðlÞ, which is similar to the method adopted
in Ref. [14]. Function S is the von Neumann entropy
defined as Sð�Þ ¼ �Trð�log2�Þ. Namely, the n-partite

density matrix ~�½n�
l has the same l-partite reduced density

matrices as those of �½n�, but it is maximally noncommittal

to other missing information contained in the state �½n�
[15]. A measure for the degree of irreducible k-party

correlation in the state �½n� is then defined as

CðkÞð�½n�Þ ¼ Sð~�½n�
k�1Þ � Sð~�½n�

k Þ: (2)
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The total correlation in the state �½n� is then referred to as
the nonlocal information appearing in �½n�, but nonexistent
in the 1-partite states �að1Þ. A measure of the degree of the

total correlation in the state �½n� is then defined as

CTð�½n�Þ ¼ Sð~�½n�
1 Þ � Sð~�½n�

n Þ: (3)

Substituting Eqs. (2) into Eq. (3), we find that

CTð�½n�Þ ¼ Xn
k¼2

CðkÞð�½n�Þ: (4)

Equation (4) not only justifies Eq. (3) as a legitimate
measure of the total correlation, but also implies that all
irreducible multiparty correlations construct a classifica-
tion of the total correlation. In other words, the degrees of
irreducible k-party correlation tell us how the total corre-
lation is distributed in the n-partite quantum state.

As shown in Eqs. (2) and (3), the degrees of different
types of correlations are intimately related to the
von Neumann entropy. The underlying reason is as follows.
The von Neumann entropy of a quantum state is a measure
of the degree of uncertainties of the state. The existence of

correlation in the multipartite quantum state decreases the
uncertainties of the state. Therefore the decrease of uncer-
tainties, i.e., the entropy difference, becomes a reasonable
measure for the degree of correlation.
Standard exponential form.—Since the n-partite density

matrices ~�½n�
l are essential elements in the definitions in

Eqs. (2) and (3), we give the following important

Theorem on the standard exponential form of the state ~�½n�
l .

Theorem 1.—For an n-partite quantum state �½n� with
maximal rank, a state ~�½n�

l (1 � l � n) satisfying Eq. (1)

can be expressed in the exponential form

~� ð½n�Þ
l ¼ exp

�X
aðlÞ

�aðlÞ � 1�aðn�lÞ
�
; (5)

where 1�aðn�lÞ is the identity operators on the Hilbert space

of parties �aðn� lÞ, and the operators �aðlÞ are determined
by the constrained conditions in Eq. (1).
Proof.—We solve the constrained maximization prob-

lem defined by Eq. (1) by the method of Lagrange multi-
pliers.

� Sð�½n�Þ �X
aðlÞ

Trð�aðlÞð�aðlÞ � �aðlÞÞÞ � 1� Tr

�
exp

�X
aðlÞ

�aðlÞ � 1�aðn�lÞ
��

þ Trð�aðlÞ�aðlÞÞ:

The equality is satisfied if and only if Eq. (5) is satisfied,
and the Lagrange multipliers �aðlÞ are the operators in
Eq. (5). To prove the above inequality, we have used the
Klein inequality [16]: TrAðlnA� lnBÞ � TrðA� BÞ for
positive operators A and B, where the equality is satisfied
if and only if A ¼ B. Because the Klein inequality involves
only positive operators, we need to limit ourselves to the
states with maximal rank. j

A direct result derived from Theorem 1 is

~� ½n�
1 ¼ exp

�X
að1Þ

�að1Þ � 1�aðn�1Þ
�
¼ Yn

i¼1

��ðiÞ:

Therefore the degree of the total correlation (4) in the state

�½n� is given by

CTð�½n�Þ ¼ Xn
i¼1

Sð�ðiÞÞ � Sð�½n�Þ; (6)

where we used ~�½n�
n ¼ �½n�. Although the degree of the total

correlation has an analytical expression (6), we failed to
find similar analytical results for the degrees of irreducible

multiparty correlations CðkÞð�½n�Þ.
Theorem 1 is a direct generalization of Eq. (4) in

Ref. [2]. It shows that the feature of multiparty correlation

in the state ~�½n�
l is directly embodied in the exponential

form of the state. As noted in Ref. [2], Theorem 1 is
inapplicable for the multipartite states without maximal

rank. However, most multipartite states of interest in many-
particle physics or quantum information have nonmaximal
ranks, e.g., the n-qubit stabilizer states and the generalized
GHZ states to be discussed below.
Our strategy to treat states without maximal rank is

based on the fact that a multipartite state without maximal
rank can always be regarded as the limit of a series of
multipartite states with maximal rank. If the degrees of
irreducible multiparty correlations for the series of states
with maximal rank can be obtained by using Theorem 1,
we can take the limit to get the degrees of irreducible
multiparty correlations for the state without maximal
rank. We call the above method the continuity approach.
The proofs of Theorems 2 and 3 below are typical appli-
cations of this approach.
Correlations in stabilizer states.—An n-qubit stabilizer

state �½n�
s is defined as

�½n�
s ¼ 1

2n
X

�1;...;�m¼0;1

Ym
i¼1

g�i

i ; (7)

where the operators gi are m (m � n) independent com-

muting n-qubit Pauli group elements. The set gð�½n�
s Þ ¼

fgig is called the stabilizer generator for the state �½n�
s , and

the group generated by the generator g, denoted as

Gð�½n�
s Þ ¼ fQig

�i

i ; �i ¼ 0; 1g, is called the stabilizer of
the state. To make Eq. (7) a legitimate state, the minus
identity operator is required not to be an element of the
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stabilizer Gð�½n�
s Þ. We remark that our definition of the

n-qubit stabilizer state is a generalization of the usual
definition [13], which corresponds to the case when m ¼
n. When m< n, the stabilizer states defined by Eq. (7) are
no longer pure states.

According to the definition of the n-qubit Pauli group, an

element h 2 Gð�½n�
s Þ can be written as h ¼ �Q

n
i¼1 O

ðiÞ for
O 2 fI; X; Y; Zg, where I is the 2� 2 identity operator, and
X, Y, Z are three Pauli matrices. The number of identity

operators I in the element h is NIðhÞ ¼ P
iTrO

ðiÞ=2. The
stabilizer Gð�½n�

s Þ can be classified into a series of sets

Gkð�½n�
s Þ ¼ fhjh 2 Gð�½n�

s Þ; NIðhÞ � n� kg for k 2 ½n�.
Although in general Gkð�½n�

s Þ is not a group, we can still

define a generator gkð�½n�
s Þ for the set Gkð�½n�

s Þ as a set of

elements in Gkð�½n�
s Þ such that any element in Gkð�½n�

s Þ can
be written as a unique product of elements in the set. We

remark that gkð�½n�
s Þ can be any generator set of the Abelian

Pauli subgroup generated by Gkð�½n�
s Þ. Even though the

generator gkð�½n�
s Þ is not uniquely defined, its cardinality

jgkð�½n�
s Þj is.

Theorem 2.—The irreducible k-party irreducible corre-

lation in an n-qubit stabilizer state �½n�
s is

CðkÞð�½n�
s Þ ¼ jgkð�½n�

s Þj � jgk�1ð�½n�
s Þj: (8)

Proof.—Because G1ð�½n�
s Þ�G2ð�½n�

s Þ�			�Gnð�½n�
s Þ,

we can always take g1ð�½n�
s Þ � g2ð�½n�

s Þ � 	 	 	 � gnð�½n�
s Þ.

Then the elements contained in gkð�½n�
s Þ but not in

gk�1ð�½n�
s Þ are reexpressed as gki for i 2 ½jgkj � jgk�1j�.

Thus we can construct an n-qubit state with a real parame-
ter � as

�½n�
m ð�Þ ¼ exp

�
�þ �

Xm
k¼1

Xjgkj�jgk�1j

i¼1

gki

�
; (9)

where � ¼ � lnð2ncoshjgmj�Þ, which is determined by the

normalization condition Trð�½n�
m Þ ¼ 1. Then the above state

can be expanded as

�½n�
m ð�Þ ¼ 1

2n

 
1þ Xjgmj

d¼1

tanhd�
X

P
�ki¼d

Y
k�m

g�ki

ki

!
: (10)

Note that if 9 �ki ¼ 1 for k > m, then 8 aðmÞ, we have
Tr�aðn�mÞðQk�ng

�ki

ðkiÞÞ ¼ 0. Thus the m-partite reduced den-

sity matrix �aðmÞ
m ð�Þ ¼ �aðmÞ

n ð�Þ. According to Theorem 1,
the degree of irreducible k-party correlation in the n-qubit

state �½n�
n ð�Þ is
CðkÞð�½n�

n ð�ÞÞ ¼ Sð�½n�
k�1ð�ÞÞ� Sð�½n�

k ð�ÞÞ: (11)

From Eq. (10), we observe that when the parameter � takes

the limit of positive infinity, the states �½n�
m ð�Þ are stabilizer

states. In particular,

lim
�!þ1

�½n�
n ð�Þ ¼ �½n�

s : (12)

It is easy to prove that Sð�½n�
m ðþ1ÞÞ ¼ n� jgmð�½n�

s Þj. For
� ! þ1, Eq. (11) becomes Eq. (8). j
Note that Theorem 2 is consistent with the correspond-

ing result in Ref. [17], which is obtained in terms of a series
of (k, n) threshold classical secret sharing protocols.
Theorem 2 can be used to analyze the multiparty corre-

lation distributions in all the stabilizer states. Let us illus-
trate its power by analyzing the correlations in the two

stabilizer states: �½3�
1 ¼ 1=2ðj000ih000j þ j111ih111jÞ and

�½3�
2 ¼ jGHZihGHZj with jGHZi ¼ 1=

ffiffiffi
2

p ðj000i þ j111iÞ.
For the former, there are 2 bits of correlations altogether,
and these 2 bits of correlation are irreducible 2-party
correlation. For the latter, the total correlations become
3 bits, and these 3 bits of correlations are classified into
2 bits of irreducible 2-party correlation and 1 bit of irre-
ducible 3-party correlation.
Correlations in generalized GHZ states.—A generalized

n-qubit GHZ state is defined as

jGni ¼ �j00 	 	 	 0i þ �j11 	 	 	 1i; (13)

where the parameters � and � satisfy j�j2 þ j�j2 ¼ 1 and
�� � 0.
Theorem 3.—The degrees of irreducible multiparty cor-

relation in the generalized GHZ state (13) are given by

Cð2Þð�½n�
G Þ ¼ ðn� 1ÞH2ðj�j2Þ; (14)

CðnÞð�½n�
G Þ ¼ H2ðj�j2Þ; (15)

where �½n�
G ¼ jGnihGnj andH2ðxÞ ¼ �xlog2x� ð1� xÞ�

log2ð1� xÞ. The degrees of the other types of irreducible

multiparty correlation are zero identically, i.e.,Cð3Þð�½n�
G Þ ¼

Cð4Þð�½n�
G Þ ¼ 	 	 	 ¼ Cðn�1Þð�½n�

G Þ ¼ 0.
Proof.—Let us construct an n-qubit state

�½n�ð�; ~�Þ ¼ exp

�
�þ �

Xn
i¼2

Zð1ÞZðiÞ þ ~� 	 ~�

�
; (16)

where the vector ~� ¼ �xx̂þ �yŷþ �zẑ ¼ ��̂, the opera-

tor vector ~� ¼ x̂Xð1ÞQn
i¼2 X

ðiÞ þ ŷYð1ÞQn
i¼2 X

ðiÞ þ ẑZð1Þ,
the parameter � is determined by the normalization con-

dition Trð�½n�ð�; ~�ÞÞ ¼ 1, and the notation v̂ represents the

unit vector along the direction of the vector ~v. The �̂

component of the operator vector ~� is denoted as �� ¼
�̂ 	 ~�. Note that �y

� ¼ ��, �
2
� ¼ 1, and ½��; Z

ð1ÞZðiÞ� ¼ 0
for i 2 ½n�. The state (16) can thus be written as

�½n�ð�; ~�Þ ¼ 1

2n
Xn
i¼2

½1þ tanhð�ÞZð1ÞZðiÞ�½1þ tanhð�Þ���:

In the above equation, only the term Z1�z=� in �� con-
tributes to the reduced ðn� 1Þ-partite reduced density
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matrices. Therefore the state �½n�ð�; ~�0Þ has the same ðn�
1Þ-partite reduced density matrices as the state �½n�ð�; ~�Þ if
the following condition is satisfied:

�0
x ¼ �0

y ¼ 0; tanh�0
z ¼ �z

�
tanh�: (17)

According to Theorem 1, we find

~� ½n�
m ð�; ~�Þ ¼ �½n�ð�; ~�0Þ (18)

for m ¼ 2; 3; . . . ; n� 1. Therefore the degrees of irreduc-

ible multiparty correlations for the state �½n�ð�; ~�Þ can be
obtained via Eqs. (2).

Without loss of generality, we assume that in Eq. (13)
� ¼ cosð�=2Þ and � ¼ sinð�=2Þei	. Then we define the
Bloch vector û ¼ ðsin� cos	; sin� sin	; cos�Þ. Let us take
�̂ ¼ û, then �ujGni ¼ jGni. The operators fZð1ÞXðiÞg and
�u can be regarded as the stabilizer generator of the state

�½n�
G . According to Theorem 2, the relation between the

generalized GHZ state �½n�
G and �½n�ð�; ~�Þ is

�½n�
G ¼ lim

�!þ1
�½n�ð�; �ûÞ: (19)

In this case, we find that, for m ¼ 2; 3; . . . ; n� 1,

lim
�!þ1

~�½n�
m ð�; �ûÞ ¼ j�j2j00 	 	 	 0ih00 	 	 	 0j

þ j�j2j11 	 	 	 1ih11 	 	 	 1j: (20)

A direct calculation yields the results of Theorem 3. j
Theorem 3 shows that in the generalized n-qubit GHZ

state (13), only irreducible 2-party and n-party correlation
exist, and the former is ðn� 1Þ times of the latter.

Summary.—The definition of the degree of irreducible
k-party correlation in an n-partite state is given as a natural
generalization of those defined in [2,8]. The significance of
the exponential form of a multipartite state in characteriz-
ing irreducible multiparty correlation is emphasized by
Theorem 1. Adopting the continuity approach, we are
capable of applying Theorem 1 to deal with the irreducible
multiparty correlations in multipartite states without maxi-
mal rank. Particularly, we successfully obtained the de-
grees of irreducible k-party correlation in the n-qubit
stabilizer states and the n-qubit generalized GHZ states.
The multiparty correlation structures in these states are
revealed by our results. We hope that the concept of
irreducible multiparty correlation will shed light on the
characterizations of multiparty correlations in condensed

matter system, e.g., topological orders [18–20] in degen-
erate ground states.
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