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We show theoretically that a directional dipole wave can be perfectly reflected by a single pointlike

oscillating dipole. Furthermore, we find that, in the case of a strongly focused plane wave, up to 85% of

the incident light can be reflected by the dipole. Our results hold for the full spectrum of the

electromagnetic interactions and have immediate implications for achieving strong coupling between a

single propagating photon and a single quantum emitter.
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Common treatments of light-matter interaction consider
an electromagnetic beam homogeneous over an area A
that is perpendicular to the propagation direction and use
the concept of an atomic cross section � to arrive at the
probability �=A for exciting an atom. In conventional
spectroscopy experiments, this ratio is very small because
either � is reduced by various broadening effects or A is
large for technical reasons. However, recent experiments
have shown that it is possible to overcome these difficulties
for the optical excitation of single molecules, quantum
dots, or atoms [1–5]. The intriguing question that arises
is whether the experimentally observed coupling efficien-
cies are close to or far from theoretical limits. In particular,
is it possible to excite an atomwith probability equal to one
by a single photon? Is it possible for an atom to imprint a
large phase shift on a photon that passes by? Indeed, new
publications address some of these issues [6–8].

On the theoretical side, the interaction of freely prop-
agating photons with the dipolar transition of a two-level
system (TLS) has been investigated for a quasi-one-
dimensional case with emphasis on the quantum statistics
of the incident light [9]. In three dimensions, methods of
expansion of the focused beam in terms of vectorial mode
functions and decomposition of the focused beam in dipo-
lar and nondipolar vectorial modes have been employed
[10,11]. These latter studies concluded that only the dipo-
lar component of the excitation light can couple to a dipole
and that the transmitted power is only weakly attenuated.
Interestingly and somewhat in parallel, the literature on the
interaction of a TLS with light confined to a waveguide
claims that very strong attenuation is possible [12–14]. In
this Letter, we examine the interaction of different light
fields with a dipolar emitter in the framework of Debye
diffraction and vectorial multipole expansion. We show
that an incident directional dipolar wave experiences
strong coupling to the emitter and is fully reflected. We
first consider a classical oscillator and then extend the
analysis to a TLS.

The classical interaction of light with an oscillating
pointlike dipole located at the origin O is described by
the Abraham-Lorentz equation [15]. After calculating the

differential scattering cross section, one arrives at the total
scattered power [15,16]

Psca ¼ 1

2
c�0

Z
4�

r2jEscaðrÞj2d� ¼ 2cWel
incðOÞ�; (1)

where Esca is the field scattered by the dipole and the
distance r lies in the far field kr � 1. Wel

incðOÞ ¼
�0jEincðOÞj2=4 is the time-averaged electric energy density
at O. The parameter

� ¼ �0

�2

4�2 þ �2
(2)

denotes the total scattering cross section of the oscillator,
where � is the damping rate dictated by radiation reaction
and � ¼ !L �!0 is the detuning between the incident
light and oscillator frequencies !L and !0, respectively.
The quantity �0 ¼ 3�2=ð2�Þ denotes the cross section at
resonance (� ¼ 0). We now consider the scattering ratio
[16]

K 0 ¼ Psca

Pinc

¼ 2cWel
incðOÞ�0R

SðrÞ � nd2r ¼
�0

A
(3)

at resonance. Here Pinc is the incident power, S is the time-
averaged Poynting vector of the incident field, and n is a
unit vector normal to the integration surface. The integra-
tion can be taken over a plane at the incident aperture, over
the Gaussian reference sphere (GRS), or over the focal
plane (FP).
The derivation of Eqs. (1) and (3) is based on the fact

that the oscillator interacts only with the electric field at the
location of the oscillator, irrespective of whether the field is
homogeneous as for a plane wave or inhomogeneous as in
the focal region of a strongly focused beam [17]. Thus, �
can be treated as a universal quantity for a pointlike
oscillator regardless of the modal properties of the excita-
tion light. The quantityA introduced in Eq. (1) represents
an effective focal area and depends implicitly on � through
the diffraction phenomenon. It is closely related to the
normalized energy density Wel

inc=Pinc, which has been

studied for various focal systems [18–20]. The peculiarities
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of the incident field enter K0 viaA. Consequently, as we
will show below, the problem of minimal transmittance is
shifted to that of a minimal A, and a strong photon-
oscillator interaction is reachable for K0 * 1 [12].

We first consider an incident x-polarized plane wave of
amplitude E0. The integration in Eq. (3) over the incident
aperture is straightforward and yields Pinc ¼ 1

2 c�0E
2
0�a

2

[16], where a is the radius of the entrance aperture. We also
have Wel

incðOÞ ¼ �0½�fE0jI0ðOÞj=2��2, where f is the

focal length of the focusing system and I0ðOÞ is a diffrac-
tion integral [16,17]. The resulting value of A then yields

K 0 ¼ 128

75

1

sin2�

�
1� 1

8
ð5þ 3 cos�Þcos3=2�

�
2
; (4)

where � specifies the incident solid angle �� [see
Fig. 1(a)]. For � ¼ �=2, K0 reaches the maximum value
of 128=75 ’ 1:7. Assuming a backward and forward half-
space and accounting for the fact that half of the power is
scattered in each direction, it follows that up to 85%
of the incident light is reflected into the backward half-
space. For this configuration, the reflectance and trans-
mittance are thus limited toR & 0:85 andT ¼ 1�R *
0:15, respectively.

An alternative way of performing the integration in
Eq. (3) is to consider the FP. Because the intensity has
cylindrical symmetry about the optical axis, the electric
and the magnetic energy densities are equal at the focal
spot [17] so that 2cWel

incðOÞ ¼ SzðOÞ. The calculation of

A then becomes

A ¼
R
FP Szd

2r

SzðOÞ ¼
R
FPðjI0j2 � jI2j2Þd2r

jI0ðOÞj2 ; (5)

where I2 is again a diffraction integral [17]. The integra-
tion in the numerator turns out to be straightforward when
an orthogonality relationship for Bessel functions is con-
sidered [16]. We note that the fields in a strongly focused

beam show vortices in the FP [21] so that Sz takes on
positive and negative values as shown in Fig. 2(a) [17].
Thus, in general, SzðrÞ cannot be substituted by 2cWel

incðrÞ,
which is a positive quantity. We remark in passing that
Ref. [10] predicts a much lower value than 1.7 for a
quantity equivalent to our parameter K0. We believe one
of the origins of this discrepancy is that Ref. [10] takes the
integrand in the definition of A to be 2cWel

incðrÞ.
In order to derive an upper limit of K0 for the general

class of transverse axially symmetric systems, we consider
the field produced by the combination of an electric and a
magnetic dipole which has been suggested for optimal
focusing [18,22]. To emulate such a field, one considers
the emission field patterns at the GRS of virtual electric
and magnetic dipoles orthogonal to each other and placed
at O and then reverses the field propagation. Using Eq. (3)
for the calculation of A, we obtain [16]

K 0 ¼ 1
4ð7� 3 cos�� 3cos2�� cos3�Þ: (6)

At � ¼ �=2, K0 ¼ 7=4 establishes the maximum value
for transverse axially symmetric systems. This is only
slightly larger than 128=75 obtained for the plane wave.
We next abandon the restriction of axial symmetry and

search for an upper limit of K0 in general. Guided by a
mode matching argument [6,10], we consider a directional
dipolar incident wave. In this case the incident field stems
from the emission pattern at the GRS of a virtual dipole
parallel to the x axis and placed at the origin [23].
Following Eq. (3), we obtain [16]

K 0 ¼ 1
2ð4� 3 cos�� cos3�Þ: (7)

We remark thatA deduced from Eqs. (3)–(7) is equivalent
to the corresponding expression for the normalized energy

FIG. 1 (color online). (a) Incident light propagating along the z
axis is focused with a spherical phase front onto a dipole placed
in vacuum. GRS: Gaussian reference sphere; a: entrance-
aperture radius; �: entrance half angle; �: collection half angle;
f: focal length. (b) The dashed curve plots the transmittance for
the focused plane wave and displays an attenuation of T ’ 80%
at resonance for � ¼ � ¼ �=3. The solid curve shows that a
directional dipolar wave can be completely attenuated for � ¼
� ¼ �=2.

FIG. 2 (color online). (a) The z component of the Poynting
vector Sz (solid curve) and the electric energy density Wel

inc

(dashed curve), both along the positive x axis in the focal plane
and normalized to their respective values at x ¼ 0. (b) Scattering
ratio K0 as a function of � for several focused waves. pz

denotes the dipole wave with the electric dipole along the z
axis, pw signifies the focused plane wave, pþm shows the
combined electric and magnetic dipole fields, and px notes the
wave of an electric dipole oriented along the x axis. K0 ¼ 2 is
reached at � ¼ �=2 for px and pz. The horizontal dashed line
separates the regimes K0 _ 1.
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density in Refs. [19,20]. At � ¼ �=2, A reaches its
minimum value of A ¼ �0=2 and K0 its ultimate maxi-
mum value of 2, respectively. This value is consistent with
the limitWincðOÞ=Pinc � k2=ð3�cÞ given by Bassett for the
sum Winc of the time-averaged electric and magnetic en-
ergy densities at the focal spot [24]. As a last case study, we
consider the interaction of an oscillating dipole oriented
along the z axis with a radially polarized dipolar incident
field obtained from the radiation of a virtual dipole oriented
along the z axis and located at O [18]. Here, too, we find
thatK0 reaches the maximum value of 2 at � ¼ �=2 [16].

Figure 2(b) displays K0 as a function of � for various
illuminations considered above. In all cases, K0 * 1 is
met for realistic numerical apertures. We are, thus, facing
the paradoxical seeming situation that the power emitted
by the oscillator may be larger than the incident power.
However, this finding does not violate the law of power
conservation because there is destructive interference in
the forward direction. We analyze this interference by
determining now the incident and scattered fields at the
GRS for z > 0. A particularly insightful approach is to
expand an arbitrary excitation field in terms of vectorial
multipoles [25–27]. All multipoles become zero at the
origin except the electric dipole mode, which for a trans-
verse system reads [25]

N e11 ¼
� 2
3 êx; r ¼ O;

ðcos# cos’ê# � sin’ê’Þ eiðkr��=2Þ
kr ; kr � 1:

(8)

We note that here the field for kr � 1 is given only for the
outgoing wave. The electric dipole-wave component � of
the excitation field can be written as

� ðrÞ ¼ EincðOÞ
jNe11ðOÞjNe11ðrÞ; (9)

where EincðOÞ is taken from the Debye diffraction ap-
proach [16]. The field scattered by the oscillator also forms
a dipole wave [15]

E scaðrÞ ¼ � 3EincðOÞ�
2ð2�þ i�Þ

eikr

kr
½êx � ðêx � r̂Þr̂�; (10)

where r̂ is the unit vector along r and the polarization of
EincðOÞ is along the x axis. At resonance, one finds Esca ¼
�� for kr � 1, z > 0. Therefore, the dipole-wave com-
ponent of the excitation field is completely reflected just as
in the reflection of a collimated beam from a perfect metal.
The � phase shift of Esca with respect to Einc results from
the sum of two effects. First, the comparison of Eqs. (8)
and (10) reveals a relative Gouy phase shift of��=2 [28].
Second, the denominator of the Lorentzian term in Eq. (10)
yields a phase shift of �=2 on resonance.

This approach allows for an easy calculation of the
transmittance T as a function of the angles � and �. For
a focused incident plane wave, we find [16]

T ð�;�Þ ¼ 1þ 3I0ð�ÞXð�ÞI0ð�Þ � I0ðminf�;�gÞ
2sin2ðminf�;�gÞ ;

Xð�Þ ¼ 1

8
ð4� 3 cos�� cos3�Þ;

I0ð�Þ ¼ 16

15

�
1� 1

8
ð5þ 3 cos�Þcos3=2�

�
: (11)

The numerical data in Fig. 3 display a rapid decrease of T
with increasing �, while the dependence on � is less
pronounced. Of particular experimental relevance is the
geometrical shadow boundary where � ¼ �; i.e., all of the
incident light is collected. Along this line, the transmit-
tance experiences a minimum ofT ’ 0:1 at � ’ 0:43�.T
as a function of the detuning is presented in Fig. 1(b) for
� ¼ � ¼ �=3. We point out that more complicated ex-
pressions are expected if the dipole is displaced from the
focal spot. Particularly, the phase fronts of the scattered
and excitation fields no longer match at the GRS.
In this work, we have shown that a classical pointlike

oscillating dipole can undergo strong coupling with a con-
fined incident beam, reaching 100% efficiency when the
illumination consists of a directional dipolar field. In fact,
in the limit of weak excitation, many essential features of
light-matter interaction are shared by the quantum electro-
dynamic and classical formalisms alike [29]. A central
underlying reason for this phenomenon is that both treat-
ments use the same spatial description of the electromag-
netic field. To this end, our classical results can be readily
extended to the interaction of light with a TLS. The scat-
tering cross section of a quantum mechanical TLS is
known to be [30]

�TLS ¼ �0

�2

4�2 þ �2 þ 2V 2
; (12)

FIG. 3 (color online). Transmittance T of a focused plane
wave as a function of the angles � and � as defined in Fig. 1(a).
The dashed curve indicates the edge at the geometrical shadow
boundary � ¼ �, and the vertical arrow indicates the location
� ¼ � ’ 0:43� of the minimum value approximately equal to
10%. T values for the cases � ¼ �=2, � ! 0, and � ¼ � ¼
�=2 are also noted.
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where �0 is the same quantity as in Eq. (2), � stands for the
spontaneous emission rate, V ¼ �d12 �EincðOÞ=@ is the
Rabi frequency, and d12 denotes the vectorial transition
dipole moment. In a semiclassical treatment, the coher-
ently scattered field by the TLS is [30]

E coh
sca ¼ �3�ð�� i�=2ÞEincðOÞ

4�2 þ �2 þ 2V 2

eikr

kr
½êx � ðêx � r̂Þr̂�:

(13)

At weak excitation jV j � �, Eqs. (12) and (13) become
equivalent to Eqs. (2) and (10). Therefore, the results
obtained for the classical oscillator also hold for a TLS.
We thus conclude that a directional dipole wave can be
perfectly reflected from a TLS under weak excitation.
However, in the saturation regime jV j * �, �TLS de-
creases with increasing excitation.

Considering a quantized field, we are led to conclude
that a few or even single photon pulses can be fully
reflected by a single TLS if the coherence time of the
photon is sufficiently long compared to the excited state
lifetime [12]. The modal formalism developed in this
Letter can be extended in the context of QED to analyze
such phenomena and will be the subject of a future study.
Furthermore, it would be interesting to investigate the
photon autocorrelation function since photon bunching or
antibunching is generally expected when there is destruc-
tive or constructive interference, respectively [9,10].

In conclusion, we have shown that a single pointlike
oscillating dipole can fully reflect an incident light field.
For the experimentally important case of a focused plane
wave, we have found that the transmission can be attenu-
ated by up to 85%. Our results readily hold for the whole
electromagnetic spectrum, and we expect interesting ap-
plications in the detection and spectroscopy of subwave-
length objects in the infrared to radio-wave domains. In the
optical range, we anticipate that a strong coupling between
a single photon and a single quantum system can be
realized in a directional focal system without the need
for high finesse cavities. Such an arrangement would
open new doors for quantum information processing using
photons as information carriers.
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