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2Collège de France, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 05, France
(Received 21 July 2008; published 28 October 2008)

We have frozen the coherent evolution of a field in a cavity by repeated measurements of its photon

number. We use circular Rydberg atoms dispersively coupled to the cavity mode for an absorption-free

photon counting. These measurements inhibit the growth of a field injected in the cavity by a classical

source. This manifestation of the quantum Zeno effect illustrates the backaction of the photon number

determination onto the field phase. The residual growth of the field can be seen as a random walk of its

amplitude in the two-dimensional phase space. This experiment sheds light onto the measurement process

and opens perspectives for active quantum feedback.
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The ‘‘quantum Zeno’’ effect is a spectacular manifesta-
tion of the measurement backaction. The coherent evolu-
tion of a quantum system is inhibited by repeated
projective measurements performed at short time intervals.
This effect, theoretically discussed in Refs. [1–3], has been
observed on the evolution of two-level systems such as
molecules [4], trapped ions [5], and cold atoms [6] as well
as on polarization of light [7]. We describe here the ob-
servation of the Zeno effect on a harmonic oscillator. The
buildup of a coherent field in a high-Q superconducting
cavity coupled to a classical source is inhibited by watch-
ing repeatedly the photon number. The measurements use
circular Rydberg atoms as nondestructive probes [8,9]. The
system free evolution is here a runaway coherent classical
process, instead of the two-level quantum dynamics con-
sidered in Refs. [4–7]. When watching the system, we
record single trajectories, and the field state evolution is
obtained by a statistical analysis of these data. This study
sheds light on the relationship between the Zeno effect and
the measurement backaction.

We first revisit the basics of the Zeno effect in the
context of our experiment. A classical source is resonantly
coupled to the cavity. The evolution due to the source-
cavity coupling during a time T is described by the dis-
placement operator Dð�Þ ¼ expð�ay � ��aÞ [10], where
� ¼ �T, a (ay) are the photon annihilation (creation)
operators, and � is the complex amplitude of the source.
At this stage, we neglect relaxation, assuming T � Tc,
where Tc is the cavity damping time. The initially empty
cavity contains at time T the coherent state j�i ¼ Dð�Þj0i
(j0i is the vacuum). The average photon number �n ¼
j�j2 ¼ j�j2T2 runs away quadratically with T. This evo-
lution can be split into small steps of duration�t � T. The
final displacement results from the coherent accumulation
of successive injection pulses, each being described by the
translation operator Dð��tÞ.

We now watch the field evolution. In order to separate
the field probing from its coupling with the source, we

alternate measurements with injection pulses of duration
�t, such that j�j�t � 1. After the first pulse, the cavity
contains a coherent state j��ti � j0i þ ��tj1i (j1i is the
one-photon state). With a probability p0 � 1� ðj�j�tÞ2,
the first measurement projects this state back onto j0i.
After N iterations of the injection-measurement sequence,
the field is left in j0i with a probability pN

0 � ½1�
ðj�j�tÞ2�N � 1� j�j2T�t, where T ¼ N�t is the total
injection time (we assume that �t is chosen small enough
so that j�j2T�t � 1). The average photon number �n ¼
j�j2T�t grows linearly with T. This is strikingly different
from the quadratic growth obtained without measurements.
The final mean photon number is smaller than j�j2T2, the
value reached without measurements. The corresponding
reduction factor T=�t can be made arbitrarily large. At
the limit of infinitely many measurements (�t ! 0 and
N ! 1 with T constant), the field remains in j0i [11].
An interesting insight into the Zeno effect on light is

provided by considering the backaction of the measure-
ment on the field phase. Each photon number determina-
tion erases phase information, randomizing at each step the
field phase. The field amplitude undergoes a two-
dimensional random walk, with a step size j�j�t, instead
of a deterministic addition of identical displacements along

a fixed direction. The final rms amplitude
ffiffiffiffi

N
p j�j�t, cor-

responding to �n ¼ j�j2T�t, coincides with the prediction
based on the projection postulate.
In the analysis of the Zeno effect, it is essential that the

probability for finding the system in its initial state has a
quadratic evolution at short times. There is no Zeno effect
when the cavity is coupled to an environment with a short
memory time �c, inducing an evolution with probabilities
varying linearly with time. Assume, for instance, that the
cavity, prepared in vacuum, relaxes within the damping
time Tc towards a thermal equilibrium with a blackbody
mean photon number nb [9]. The probability for finding the
cavity in j0i after an initial time interval �t � �c is p0 �
1� ðnb=TcÞ�t, provided nb�t=Tc � 1. The probability
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for being in j0i afterN steps of length�t, each followed by
a measurement, is then pN

0 � ½1� ðnb=TcÞ�t�N �
1� nbT=Tc (with nbT=Tc � 1). The field energy grows
linearly at short times, with the same rate as without
measurements.

Similarly, the exponential damping of a field stored in
the cavity leads to state probabilities varying linearly with
time, which are not modified by repeated measurements.
The Zeno effect thus does not affect the irreversible damp-
ing rate Tc of the cavity. Note that other irreversible
systems may exhibit at short but experimentally accessible
times, a nonexponential behavior with a quadratic initial
evolution. Quantum Zeno and anti-Zeno effects have been
theoretically described [12] and observed [13] for such
irreversible processes.

Our experimental setup [10,14] is shown in Fig. 1. The
key element is the superconducting cavity C, made up of
two niobium mirrors facing each other [15]. It has a
remarkably long damping time Tc ¼ 0:13 s, when cooled
to 0.8 K. The pulsed classical source S, tuned to resonance
with the cavity mode at 51.099 GHz, irradiates C from the
side. A small fraction of the photons emitted in a pulse are
coupled intoC through diffraction on the mirror edges. The
other photons disappear quasi-instantaneously when S is
switched off.

Phase stability is critical for the coherent accumulation
of successive pulses in C. An atomic clock locks S with a
sub-Hertz precision. The lifetime-limited linewidth of C is
1.2 Hz full width at half maximum (FWHM). The cavity
frequency must be stabilized to this level, requiring a
control of the 2.7 cm cavity length to a 0.5 picometer
precision. We stabilize the cavity length passively. The
cryostat has been isolated from external vibrations. We
have stabilized the refrigerator temperature to �10�4 K
and the pressure of the liquid helium bath to �0:1 mbar.
Piezo elements tune the mirror separation and hence the

mode frequency with a 2:4 kHz=V sensitivity. Their drive
voltage (83 V) is stabilized to �0:1 mV and drifts by less
than �0:2 mV=h.
The inset in Fig. 1 shows the cavity resonance spectrum

probed by S operating in a quasicontinuous emission
mode. We switch off S for short time intervals, during
which the field intensity in C is measured by resonant
Rydberg atoms [15]. These atoms are not submitted to
the intense field radiated outside C when S is on. The
Lorentzian fit FWHM is 2.0 Hz, differing from the ex-
pected 1.2 Hz width, due to a combination of short term
fluctuations and long term drift. During data acquisition,
we measure the cavity frequency every ten minutes and
reset S at resonance with C. If the drift between two
measurements is above 1.2 Hz, we eliminate the corre-
sponding data. We estimate that the S-C detuning �=2� is,
on average, 0:6� 0:2 Hz during data acquisition.
The nonresonant quantum-nondemolition (QND) probe

atoms are prepared in box B from a velocity-selected
rubidium atomic beam (velocity v ¼ 250� 1 m=s) in
the circular Rydberg level g (principal quantum num-
ber 50). Rydberg atom samples are prepared within 2 �s
pulses. Their positions are well-known during their flights
through the apparatus. The cavity mode is close to reso-
nance with the transition from g to e (circular state with
principal quantum number 51). The atom-cavity detuning
�=2� ¼ 240 kHz is larger than the vacuum Rabi fre-
quency �0=2� ¼ 50 kHz, which defines the atom-cavity
coupling. The atoms are transparent probes, unable to
absorb or emit photons in C. The g ! e transition fre-
quency is, however, light-shifted. This shift, proportional
to the photon number n, is used to measure it nondestruc-
tively [8,9].
Before entering C, each atom is prepared in the super-

position ðjei þ jgiÞ= ffiffiffi

2
p

by a �=2 pulse, resonant on the
g ! e transition, produced by the classical source S0 in the
low-Q cavity R1. Using the Bloch pseudospin representa-
tion, we describe this superposition as a spin in the OX
direction of the Bloch sphere. The light shift accumulated
during the atom-cavity interaction changes the phase of the
e=g superposition, in a frame rotating at the atomic tran-
sition frequency in vacuum [9,10]. When n photons are
stored in C, the atomic spin rotates by an angle n�0 in the
equatorial plane of the sphere. With the chosen values of �
and v, the phase shift per photon is �0 � �=4. We mea-
sure the spin direction by applying on the atom, at the exit
ofC, a�=2 pulse in R2 with a phase’ relative to that of the
R1 pulse. The subsequent detection of the atomic state (e or
g) in the field-ionization detector D is equivalent to a spin
detection at the exit ofC along theOu axis in the equatorial
plane, at an angle ’ with OX.
The setting �0 � �=4 is appropriate for a QND mea-

surement up to n ¼ 7 [9]. The photon numbers n ¼
0; . . . ; 7 are associated to 8 directions of the atomic spin
at the exit of C. We send an ensemble of probe atoms in a

FIG. 1 (color online). Experimental setup (cavities C, R1, and
R2 are cut for clarity). The inset shows the cavity spectrum (dots)
and a Lorentzian fit (line) with a 2.0 Hz FWHM.
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time shorter than Tc. For a given photon number n, all
atomic spins in this ensemble point in the same direction.
We infer it by a quantum tomography process, in which we
detect the spins individually along one out of four different
axes corresponding to ’=� ¼ �0:250, �0:047, þ0:247,
and þ0:547. With 110 atoms in the ensemble, the statisti-
cal noise on the tomography process is of the order of the
phase shift �0.

Let us first examine the coherent field growth without
QND probe atoms between the injections. An experimental
sequence starts by resetting the field to j0i using a large
number of absorbing atoms, prepared in g and set at
resonance with C via the Stark effect. We then inject N
identical pulses (50 �s duration) in C, separated by a time
interval Ti ¼ 5:04 ms. At the end of the sequence, we
perform a QND measurement of the cavity field.

Figures 2(a)–2(c) present the probability distributions
of the measured spin phase ’ for N ¼ 0, 20, and 50
injection pulses, respectively. For each sequence, we detect
�200 atoms over a Tm ¼ 72 ms duration, starting 2Ti

after the last injection. From these data, we extract about
90 nonindependent ’ values based on spin tomographies
performed on a sliding window containing an ensemble of
110 atomic detections. We repeat the procedure 500–
2000 times. For N ¼ 0, the phase distribution is peaked
at ’ ¼ 0 revealing an empty cavity. For N ¼ 20, the peaks
centered at �0 and 2�0 reveal the buildup of small prob-
abilities for having one and two photons. For N ¼ 50
injections, equidistant peaks are visible, corresponding to
n ¼ 0; . . . ; 5. These discrete peaks directly reveal the field
energy quantization in C [16]. The phase distributions are

fitted by sums (thick red line) of Gaussians (thin green
lines) with a unique standard deviation of 0:266�, corre-
sponding to the spin tomography statistical noise. From
these fits, we extract �0 ¼ 0:233�. We also obtain the
photon number distributions and their averages. These
distributions are Poissonian as expected for coherent
states; see the insets in Fig. 2.
Cavity relaxation cannot be totally neglected during the

delay between the last injection and the measurement. We
thus correct the measured mean photon number by a scal-
ing factor of 1.4, taking into account the � 2Ti þ Tm=2
delay between the last injection pulse and the center of the
measurement time interval. Figure 3(a) shows the evolu-
tion of the rescaled average photon number �n as a function
of N (red squares). Phase stability problems prevented us
from recording data for N > 50. As expected, the initial
growth is quadratic. For large N values, the sequence
duration is comparable to Tc and 1=�. For a comparison
with theory, we must take into account cavity damping and
cavity-source detuning. The expected cavity field ampli-
tude after k injections is

FIG. 2 (color online). Probability distributions of the atomic
spin phase after (a) 0, (b) 20, and (c) 50 field injections in C (no
intermediate QND measurements). The thick red line is a fit to a
sum of Gaussian distributions (thin green lines). Resolved peaks
are centered at the quantized light shifts, clearly illustrating field
energy quantization. The Gaussian fits provide a direct measure-
ment of the photon number probability distributions shown in the
insets, together with Poissonian fits (solid lines).

FIG. 3 (color online). (a) Average photon number �n in C as a
function of the number N of injection pulses (bottom axis). The
top axis gives a time scale for the complete sequence, including
injection and measurement times. The red squares correspond to
the uninhibited field growth, without measurements between
injections (statistical error bars for N < 50 are smaller than the
point size). The initial evolution is quadratic. The line is a fit
providing a precise calibration of the injection pulse amplitude.
The blue dots result from atomic spin tomography performed
between injection pulses. The field growth is inhibited by the
quantum Zeno effect. The open circles correspond to QND
measurements of the photon number using 200 atomic detections
at the end of sequences with 20, 50, and 100 injection-
measurement cycles. (b) Inhibited field evolution with an ex-
panded vertical scale [blue dots in (a)]. The error bars reflect the
statistical noise. The solid and dotted black lines are theoretical
predictions (see text). The initial growth is now linear.
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�k ¼ e�Ti=2Tc�k�1 þ eiðk�1ÞTi��1 ¼ e�kTi=2Tc � eik�Ti

e�Ti=2Tc � ei�Ti
�1;

(1)

where �1 is the first pulse amplitude, which is taken as
the phase reference (�1 is assumed to be real, without loss
of generality). The value of �1 is deduced from a fit of
the calculated photon number with the data [solid line in
Fig. 3(a)], taking into account the estimated � value. We
get �n1 ¼ �2

1 ¼ 0:002 23� 0:000 12.
We now send QND probe atoms between injections and

record their final state, thus acquiring information from
each realization of the field state. In order to determine the
evolution of the average photon number, we perform a
statistical analysis of many such realizations, using a sim-
plified version of the spin tomography method described
above. Since the photon number is now expected to remain
small, we use a single detection phase ’ ¼ �0:278�,
which optimally discriminates the spin directions corre-
sponding to 0, 1, and 2 photons. To obtain the spin histo-
gram and thus determine the average photon number at a
given time, we collect the information from atoms detected
in a �25 ms window around this time (50 atoms detected
during 5 injection-measurement cycles) and repeat the
procedure from 500 to 2500 times. The basic conclusions
of our initial qualitative discussion are valid, since the
amplitude injected by five consecutive pulses is still very
small.

The corresponding average photon number �n is shown
(blue dots) as a function of N in Fig. 3(a). All �n values are
determined from independent samples made of 50 detected
atoms. We check this simplified measurement by a com-
plete spin tomography performed on�200 detected atoms
at the end of sequences with 20, 50, and 100 injection-
measurement cycles [open circles in Fig. 3(a)]. The field
growth is almost completely inhibited, �n remaining be-
low 0.2.

Figure 3(b) presents the inhibited field growth with an
expanded vertical scale. This growth can be modeled by a
random walk, assuming that the field phase is blurred
between two injections. The dotted black line in Fig. 3(b)
presents the prediction of this model with no adjustable
parameter. This prediction is slightly below the observa-
tions, indicating that the phase is not totally blurred be-
tween injections. We have performed a detailed quantum
Monte Carlo simulation of the field phase diffusion in-
duced by the atoms crossing C. It includes the cavity
relaxation, the finite 0.8 K temperature of its mode (nb ¼
0:05 blackbody photons on average), and the finite detec-
tion efficiency of D (50%). The simulation results [solid
black line in Fig. 3(b)] are in excellent agreement with the
observations and clearly exhibit the initial linear growth of
�n, characteristic of the Zeno effect.
We have observed a clear manifestation of the quantum

Zeno effect on light. Repeated intensity measurements

performed on the field in a high-Q cavity inhibit the
quadratic runaway of the energy fed by a pulsed classical
source. The residual field growth is modeled by a random
walk in phase space. This effect illustrates vividly the
backaction of the photon number measurement onto the
field phase. The realization of this experiment opens inter-
esting perspectives for controlling quantum systems.
Instead of freezing their evolution, repeated measurements
could provide information used to channel them towards
tailored quantum states by active feedback operations [17].
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