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We predict the existence of self-trapping, stable, moving solitons and breathers of Fermi wave packets

along the Bose-Einstein condensation (BEC)-BCS crossover in one dimension (1D), 2D, and 3D optical

lattices. The dynamical phase diagrams for self-trapping, solitons, and breathers of the Fermi matter

waves along the BEC-BCS crossover are presented analytically and verified numerically by directly

solving a discrete nonlinear Schrödinger equation. We find that the phase diagrams vary greatly along the

BEC-BCS crossover; the dynamics of Fermi wave packet are different from that of Bose wave packet.
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Recently, superfluid Fermi gases in optical lattices have
attracted much attention both experimentally and theoreti-
cally. The superfluidity of ultracold fermions in optical
lattices has been established [1]. In such a superfluid
system, the physical parameters, e.g., lattice parameters,
interaction strength, etc., can be manipulated by using a
modern experimental technique like Feshbach resonance.
Taking advantage of this, people have given many theo-
retical efforts on the crossover from Bose-Einstein con-
densation (BEC) to Bardeen-Cooper-Schrieffer (BCS)
state in optical lattices, such as Bloch oscillations [2],
superfluid-insulator transitions [3,4], and the collective
excitations [5,6]. The intrinsically localized excitations,
i.e., gap solitons (shape-preserving objects supported by
the balance between the repulsive nonlinearity and nega-
tive effective mass induced by lattices potential [7,8]), in
Fermi gases trapped in 1D optical lattices are also pre-
dicted [7]. To our knowledge, however, there are no sys-
tematically analyses of the dynamics of Fermi gases loaded
into 3D optical lattices. Especially, self-trapping (charac-
terized by a diverging effective mass, and the wave packet
remaining localized around few sites), an intriguing phe-
nomenon has been observed in Bose systems [8–13] but
was not studied in Fermi systems. Thus, there remain some
important problems, e.g., how the dynamical properties
behave in a Fermi system.

In this Letter, we address this issue both analytically and
numerically focusing on the dynamics of Fermi gases in
deep 3D optical lattices, within the tight-binding approxi-
mation. Based on a discrete, nonlinear Schrödinger equa-
tion, the phase diagram for self-trapping, soliton (gap
type), breather (characterized by internal oscillations and
created in a gap soliton) [8], diffusion of the Fermi matter
waves in 3D optical lattices is obtained analytically. Our
results show many new and interesting consequences.
(i) The self-trapped state of Fermi wave packets can exist
in 1D, 2D, and 3D optical lattices along the BEC-BCS
crossover. (ii) The stable moving soliton and breather
solutions of Fermi wave packet along the BEC-BCS cross-
over in both 1D and 2D systems can exist, while for the 3D
case, the stable moving soliton and breather solutions can

exist only in the BCS side. This point is different from the
Bose system (in the Bose system, the stable moving soliton
and breather solutions can exist only in 1D lattices [11]).
(iii) The critical conditions for the occurrence of self-
trapping, soliton, and breather solutions change dramati-
cally when the system transitions from the BEC side to the
BCS side. The self-trapped, soliton, and breather states
take place in the BCS side always easier than those in
the BEC side. Moreover, the critical conditions for the
occurrence of self-trapping, soliton, and breather solutions
in both BEC and BCS sides increase sharply with lattice
dimension.
Consider an interacting two equally populated spin com-

ponents superfluid Fermi gas of N atoms trapped in 3D
optical lattices. For large enough N, we assume that the
Cooper pair size is smaller than the lattice spacing and the
system behaves hydrodynamically from the molecular
BEC side to BCS side [1,2]. Under these assumptions,
the dynamics of this 3D Fermi system at T ¼ 0 satisfies
the nonlinear Schrödinger equation [14–19]
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where � is the superfluid order parameter, Voptð ~rÞ ¼
sER½cosð2�x=dÞ þ cosð2�y=dÞ þ cosð2�z=dÞ� is the ex-
ternal optical potential created by three orthogonal pairs of
counter-propagating laser beams, with the parameters s the
strength of the optical lattices and ER ¼ "2�2=2Md2 the
recoil energy of the lattices; d is the lattice period andM is
the mass of one atom (in the BEC side, the mass of the
Cooper pair should be 2M and the number of the pairs
should be N=2). We assume the power-law form of the
equation of state as �ðnÞ ¼ Cj�j2�, which is being used
successfully to study the Fermi superfluid along the cross-
over [15–19]. Here, C is a constant depending on the
atoms’ interaction strength [18] and � is a function of an
interaction parameter � ¼ 1=kFa, where kF is the Fermi
wave vector and a is the scattering length between Fermi
atoms of different components (in the BEC side, the effec-
tive scattering length between the paired molecules should
be 0:6a). At T ¼ 0, the energy per particle of a dilute
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Fermi system is � ¼ ð3=5ÞEF�ð�Þ, where EF ¼ "2k2F=2M
is the free particle Fermi energy and �ð�Þ is a function of
the interaction parameter �. Recently, a simple analytical
expression for �ð�Þ with only one free parameter along the
BEC-BCS crossover was given [20]. Here, the expression
for �ð�Þ given in Ref. [18] is applied. Then the chemical
potential � and the effective adiabatic index � can be
obtained [18].

When the lattice depth is sufficiently high, the Fermi
energy is small compared to the interband gap, and the
energy of the system should be confined within the lowest
band. So one can work in the tight-binding limit [8,11].
Under the tight-binding approximation, the order parame-

ter can be written as �ð ~r; tÞ ¼ ffiffiffiffi
N

p P
n;m;kc n;m;kðtÞ�ð~r�

~rn;m;kÞ, where c n;m;kðtÞ is the ðn;m; kÞth amplitude and

�ð~r� ~rn;m;kÞ is the Wannier function of the lowest band

localized in the site (n, m, k), with the normalizationR
d~r�2

n;m;k ¼ 1. Inserting this nonlinear tight-binding ap-

proximation into Eq. (1) and integrating out the spatial
degrees of freedom, we find the reduced dimensionless 3D
discrete nonlinear Schrödinger equation _c n;m;k ¼
@H=@ðic �

n;m;kÞ, where H is the Hamiltonian function
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with
P

n;m;kjc n;m;kj2 ¼ 1. The terms in parentheses are ki-

netic energies of n, m, k components, and the variables
have been rescaled as t ! ½"=ð2JÞ�t, " ! "=2J. Here,
� ¼ U=2J, J is the tunneling rate between the adjacent
sites, U is the effective on-site interaction, and " is the on-
site energies. Loading a Fermi gas into 1D or 2D optical
lattices, and confining in the transverse direction(s) by a
tight cigar-shaped or pancake-shaped trap, Eq. (2) can be
extended to 1D (the kinetic terms of m and k compo-
nents are absent) or 2D (the kinetic term of the k compo-
nent is absent) case with modified nonlinear interaction
parameter �.

We consider the evolution of a Gaussian ansatz,

which we parametrize as c n;m;kðtÞ ¼ 2ðD=4Þ
RðD=2Þ�ðD=4Þ �

expf� ðn��Þ2þðm��Þ2þðk��Þ2
R2 þ ip½ðn��Þþ ðm��Þþ ðk�

�Þ�þ i �2 ½ðn��Þ2 þðm��Þ2 þðk��Þ2�g, where �ðtÞ and
RðtÞ are the center and the width of the wave packet, pðtÞ
and �ðtÞ are their associated momenta, and D ¼ 1, 2, 3
refer to the dimension of the optical lattices. In our 3D
Fermi system, we have defined �x ¼ �y ¼ �z ¼ �, Rx ¼
Ry ¼ Rz ¼ R, px ¼ py ¼ pz ¼ p, �x ¼ �y ¼ �z ¼ �. It

is important to note that, for the 1D (2D) case, the m and k
components (the k component) of the Gaussian ansatz
should be dropped. The wave packet dynamical evolution

can be obtained by a variational principle from the
Lagrangian L ¼ P

n;m;kið _c n;m;kc
�
n;m;k � c n;m;k

_c �
n;m;kÞ �

H, with the equations of motion for the variational parame-
ters qiðtÞ ¼ �, R, p, � given by d

dt
@L
@ _qi

¼ @L
@qi

. For an untilted

trap, the momentum p remains a constant p0, and the
equations of motion of collective variables �ðtÞ, RðtÞ, �ðtÞ
in the 1D, 2D, and 3D cases are given by
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where 	 ¼ 1
2R2 þ R2�2

8 . Initially, we set �0 ¼ 0 and �0 ¼ 0.

In this case, the effective Hamiltonian becomes

H ¼ �Dðcosp0Þe�	 þ �

ð1þ �ÞðDþ2Þ=2
1

RD�

�
2

�

�ðD�=2Þ
:
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Clearly, the dynamical properties of the system are influ-
enced by the atoms’ interaction parameter �, the dimen-
sion of optical lattices D, and the initial quasimomentum
p0. We should note that, when cosp0 < 0, the effective

mass 1
m� � @2H

@p2
0

¼ De�	 cosp0 is negative and the system

can exist in a soliton solution [7,8]. So two cases with
cosp0 > 0 and cosp0 < 0 will be discussed, respectively.
For cosp0 < 0, we give the results as follows:
Self-trapping.—When the diffusion occurs, R ! 1,

H ! �D cosp0, thus in this case the self-trapping condi-
tion should be H0 >Dj cosp0j, this results in

�>�c ¼ Dð1þ �ÞðDþ2Þ=2
� ffiffiffiffi

�

2

r
R0

�
D�j cosp0j

�
�
1� e�ð1=2R2

0
Þ
�
: (5)

This condition gives the self-trapped state, while for
�<�c the diffusion should occur. When the self-

trapping occurs, R ! Rmin < R0, � ! 1, _� ! 0, and

H ! �
ð1þ�ÞðDþ2Þ=2

1
RD�
min

ð2�ÞD�=2. From H0 ¼ H, one can get

Rmin ¼ R0½ð�=�0Þ=ð1þ�=�0Þ�ð1=D�Þ, where �0 ¼
Dð1þ �ÞðDþ2Þ=2ð�=2ÞD�=2RD�

0 j cosp0je�ð1=2R2
0
Þ.

Soliton.—The soliton solution of the system corresponds

to the fixed points _R ¼ 0, _� ¼ 0, and _� ¼ constant. From
Eq. (3), the fixed point (�0, R0) satisfies �0 ¼ 0 and

�sol ¼ ð1þ �ÞðDþ2Þ=2

�

�
�

2

�ðD�=2Þ
RD��2
0 j cosp0je�ð1=2R2

0
Þ:

(6)

We now discuss the stability of this soliton state. Defining
� ¼ �0 þ �0, R ¼ R0 þ R0, and linearizing Eq. (3) at the
soliton state, we have

_�0
_R0

 !
¼ A

0 4ð2�D�� 1=R2
0Þ

�R6
0 0

� �
�0
R0

� �
(7)
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where A ¼ �
4

2�

ð1þ�Þð2þDÞ=2 ð2�ÞðD�=2Þ 1
RD�þ3
0

. The eigenvalues of

the coefficient matrix of Eq. (7) satisfy 
2 ¼ 4R6
0ðD�þ

1=R2
0 � 2Þ. For R0 > 1, if the condition

D�< 2 (8)

is satisfied, the soliton state corresponds to a center point;
in this case the soliton state is stable and a breather state
can also exist. Clearly, the stability of the soliton state
greatly depends on the dimension of the optical lattices
D and �. For a Bose system (i.e., a perfect BEC system),
� � 1, Eq. (8) indicates that the soliton and breather states
can exist only in the D ¼ 1 case [11]. While for a Fermi
system, the situation is quite different. In the BEC side, 23 <

�< 1, the condition (8) can be satisfied whenD � 2. That
is, stable soliton and breather states can stand not only in
1D case but in 2D case. More interestingly, in the BCS
side, � � 2

3 , we have D � 3, stable soliton state and

breather state can appear in 1D, 2D, even 3D Fermi sys-
tems. These are the key results of the Letter and will be
confirmed by direct numerical results.

� ¼ �sol corresponds to a soliton solution, R remains

the initial value R0, and _� ¼ constant. For �c <�<�sol,
R oscillates between the initial value R0 and a value
Rmax
osc > R0; we have a breather solution. The breather

region extends until the value �breath, for �sol <�<
�breath, R oscillates between the initial value R0 and a value
Rmin
osc <R0. The determination of �breath is as follows.

When �sol <�<�breath, we find R ! Rmin
osc <R0 and

� ¼ 0, then H ! Dj cosp0je�ð1=2R2
min

Þ þ �
ð1þ�ÞDþ2

2

1
RD�
min

�
ð2�ÞðD�=2Þ. By using the energy conservation H0 ¼ H, we

get �=�sol ¼ D�R2
0x

D�ðeðx2�1Þ=2R2
0
x2 � 1Þ=ðxD� � 1Þ,

where Rmin ¼ xR0, x < 1. It is clear that, as expected,
when x ! 1, � ! �sol. Because R0 > 1, the maximum
value of the ratio of �=�sol gives �breath=�sol

�breath ¼ �sol max
0<x<1

�
D�R2

0x
D�

1� xD� ð1� eðx2�1Þ=2R2
0
x2Þ
�
: (9)

The critical values for the occurrence of self-trapping �c,
soliton �sol, and breather �breath along the BEC-BCS
crossover are shown in Figs. 1(a)–1(i) for the cosp0 < 0
case. The first, second, and third panels correspond to 1D,
2D, and 3D Fermi systems, respectively. The critical values
�c, �sol, �breath in both BEC and BCS sides increase
sharply as D increases. For an initial Fermi wave packet,
the higher the dimension is, the larger the critical values
needed to observe the self-trapped, soliton, and breather
states. Moreover, compared to the results in the BEC side,
the critical values �c, �sol, �breath in the BCS side are
always small. The self-trapped, soliton, and breather states
take place in BCS superfluid always easier than those in
BEC superfluid.

For cosp0 > 0, there exist only two nonlinear physical
phenomena.

Self-trapping.—For t ! 1, R ! Rmax, � ! 1, and
_� ! 0, H ! �

ð1þ�ÞðDþ2Þ=2
1

RD�
max

ð2�ÞD�=2 > 0.

Diffusion.—In this case, for t ! 1, R ! 1, � ! 0, and
_� ! 1

2 sinp0, H ! �D cosp0 < 0. So the condition

�D cosp0 � H0 � 0 corresponds to the diffusive region
of the system. The critical condition between self-trapping
and diffusion is given by H0 ¼ 0; one can get

�c¼Dð1þ�ÞðDþ2Þ=2ð�=2ÞD�=2RD�
0 e�ð1=2R2

0
Þcosp0: (10)

The self-trapping phenomenon occurs at �>�c, and the
diffusion occurs at �<�c. Taking H ¼ H0, one obtains

Rmax ¼ R0½ð�=�cÞ=ð�=�c � 1Þ�1=D�. The ratio of
Rmax=R0 depends on D and �.
The critical values �c along the BEC-BCS crossover

given by Eq. (10) for cosp0 > 0 are shown in Fig. 1(j)–1(l)
for 1D, 2D, and 3D Fermi systems, respectively. Clearly,

FIG. 1. The critical values, from left to right, �c, �sol, �breath

along the BECð1=kFa > 0Þ � BCSð1=kFa < 0Þ crossover for
cosp0 < 0 (the first panel for 1D, the second panel for 2D, the
third panel for 3D) and the critical values �c along the BEC-
BCS crossover for cosp0 > 0 (the fourth panel, from left to right,
for 1D, 2D, and 3D cases), R0 ¼ 10.

FIG. 2. The time evolution of the soliton state with
� ¼ �sol ¼ 0:1225 (a) and the breather state with
� ¼ 0:25<�breath ¼ 1:1 (b) of a 1D wave packet, R0 ¼ 10,
p0 ¼ 3�=4, � ¼ 2=3.
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the critical conditions for the occurrence of self-trapping in
this case have similar properties as in the cosp0 < 0 case:
D and � have a strong effect on the critical conditions. We
also can find that the critical values for cosp0 > 0 are
larger than for cosp0 < 0.

The direct numerical solutions of Eq. (2) confirm our
theoretical predictions. Here we only present the numerical
results for BCS superfluid. Figure 2 shows the stable mov-
ing soliton solution (right) and breather solution (left) of a
1D Fermi wave packet in the BCS superfluid (� ¼ 2=3). In
Fig. 3, the stable moving 2D soliton for � ¼ �sol (the first
panel) and breather for �<�breath (the second panel) are
presented (� ¼ 2=3). Also, Fig. 4 shows the results for the
evolution dynamics of a 3D Fermi wave packet (� ¼ 0:6).
It is clear, stable moving 3D soliton (the first panel) and 3D
breather (the second panel) states can exist in a 3D Fermi
superfluid. The above numerical results support our ana-
lytical predications.

In summary, we analytically and numerically investigate
the dynamics of a Fermi gas loaded into deep optical
lattices. Self-trapping, stable moving soliton, and breather
solutions of Fermi wave packet along the BEC-BCS cross-
over in 1D, 2D, and 3D systems are obtained. In addition,

we find that the self-trapped, soliton, and breather states
take place in the BCS side always easier than those in the
BEC side. We hope that our studies will stimulate experi-
ments in that direction.
This work is supported by the National Natural Science

Foundation of China (No. 10774120), by the Natural
Science Foundation of Gansu province (No. 3ZS051-
A25-013), and by NWNU-KJCXGC-03-17.

*Corresponding author: xuejk@nwnu.edu.cn
[1] J. K. Chin, D. E. Miller, Y. Liu, C. Stan, W. Setiawan, C.

Sanner, K. Xu, and W. Ketterle, Nature (London) 443, 961
(2006).

[2] M. Rodrı́guez and P. Törmä, Phys. Rev. A 69, 041602
(2004); S. K. Adhikari, Eur. Phys. J. D 47, 413 (2008).

[3] Hui Zhai and Tin-Lun Ho, Phys. Rev. Lett. 99, 100402
(2007).

[4] Eun Gook Moon, Predrag Nikolić, and Subir Sachdev,
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FIG. 4 (color online). The constant density surface of a 3D
wave packet: The time evolution of the 3D soliton state with
� ¼ �sol ¼ 3:52 (the first panel) and breather state with � ¼
4<�breath ’ 4:4 (the second panel), R0 ¼ 10, p0 ¼ 3�=4, � ¼
0:6.
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