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The quantized stationary spin wave modes in one-dimensional antiferromagnetic spin chains with easy

axis on-site anisotropy have been studied by means of Landau-Lifshitz-Gilbert spin dynamics. We

demonstrate that the confined antiferromagnetic chains show a unique behavior having no equivalent,

neither in ferromagnetism nor in acoustics. The discrete energy dispersion is split into two interpenetrating

n and n0 levels caused by the existence of two sublattices. The oscillations of individual sublattices as well
as the standing wave pattern strongly depend on the boundary conditions. Particularly, acoustical and

optical antiferromagnetic spin waves in chains with boundaries fixed (pinned) on different sublattices can

be found, while an asymmetry of oscillations appears if the two pinned ends belong to the same sublattice.
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The necessity to write bits of information on ever de-
creasing time scales requires more and more fast switching
of magnetization in nanometer and micrometer sized ele-
ments. An important role for the speed of magnetization
reversal is played by confined spin waves, which can
promote or inhibit the switching depending on the spatial
distribution of the nonlinear oscillations, their amplitude
and temperature [1,2]. While the ferromagnetic spin waves
have been broadly studied in confined systems, the inves-
tigations on magnetic excitation patterns in confined anti-
ferromagnets are still very limited.

The majority of theoretical studies on standing spin
waves are concerned with antiferromagnetic systems of
infinite extension [3–5]. The increasing interest in nano-
systems, however, drives the focus of experimental studies
towards confined magnetic structures [6,7]. Thus far the
antiferromagnetic spin waves have been observed only by
means of neutron scattering [8,9] and antiferromagnetic
resonance [10], which are unable to provide spatial reso-
lution. However, new methods like Brillouin light scatter-
ing [11], time-resolved Kerr microscopy [12], and
scanning thermal microwave resonance microscopy [13]
give the unique possibility of visualizing standing spin
waves on the nanometer scale. Therefore, the theoretical
predictions on confined antiferromagnetic excitations are
important from the point of view of fundamental physics as
well as for future experiments.

Here we propose a promising direction for experiments
on standing spin waves by means of a theoretical descrip-
tion of the spin dynamics in confined antiferromagnetically
coupled chains with easy axis on-site anisotropy.

In the following we consider chains consisting of clas-
sical, antiferromagnetically coupled Heisenberg spins with
energy contributions from exchange interaction, anisot-
ropy, and external magnetic field. Such a spin model might
be interpreted as the classical limit of a quantum mechani-
cal, localized model with large spin.

The magnetic properties of the system are well described
by the model Hamiltonian

H ¼ J
X
hiji

Si � Sj �Dz

X
i

ðSzi Þ2

��s

X
i

½BOF cosð!tÞSi þ BSi�; (1)

where Si ¼ �i=�s is a three-dimensional magnetic mo-
ment of unit length. The first sum in Eq. (1) is the exchange
interaction between nearest neighbors with the coupling
constant J > 0. The second sum represents a uniaxial
anisotropy, with the z axis as the easy axis. For the sake
of understanding we first study a low anisotropy limit of
the Heisenberg model with Dz � J. The last sum is the
coupling of the spins to a static external magnetic field
B ¼ Bzz and to an oscillating field BOF ? B with the
frequency !.
The underlying equation of motion for magnetic mo-

ments is the classical Landau-Lifshitz-Gilbert (LLG) equa-
tion [14]. To describe the quantized spin wave spectrum we
have calculated the absorbed power P at each lattice point i
as

Pi ¼ !�sBOF

T

Z T

0
SBi ðtÞ sinð!tÞdt; (2)

where SBi gives the projection of a magnetic moment on the
axis of oscillating field [15]. Physically, P reflects the
amount of energy (power), which is transformed into
spin wave excitations.
The finite chains of length up to l ¼ 100a lattice con-

stants a have been simulated by solving the LLG equation.
The calculations were performed with fixed and opened
chain ends. The simulations were started with a relaxed
magnetic configuration, saturated in the z direction. Then
an oscillating magnetic field was applied and the absorbed
power was calculated at each site [Eq. (2)]. The sign of Pi

reflects the phase of the excitation at site i. Pi is positive
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when both SBi ðtÞ and sinð!tÞ have the same sign and
negative for the case of opposite signs. This means that
the maximum (minimum) describes oscillations in phase
(antiphase) with the oscillating field and Pi ¼ 0 means no
or no arranged oscillation. The values of Pi can be imme-
diately plotted as a function of the distance vector and thus
yield spatially resolved spin wave eigenmodes. The ob-
tained patterns contain full information about the ampli-
tude and the phase of an excitation. To observe the
absorbed power P as a function of frequency an averaging
over the whole sample must be performed. For that the
averaged signal Pav has been introduced:

Pav ¼ 1

N

XN
i¼1

jPij: (3)

With the help of Eq. (3) the power spectra, dispersion
curves, and the field dependencies of normal modes can
be easily calculated.

Figure 1 shows the spatially resolved signal Pav as a
function of frequency for a one-dimensional antiferromag-
netic chain with one fixed end, while the inset shows the
corresponding dispersion relation.

Apart from the energy gap at zero wave vector k one can
recognize in Fig. 1 two groups of peaks, with larger and
smaller peak height. All peaks lie on the same straight
dispersion line predicted in [3] (see inset). In Ref. [3] the
dispersion curve has been obtained in the framework of the
mean field theory, where instead of anisotropy and ex-
change constants an effective field has been used. We
have derived the dispersion relation using the exact
Hamiltonian [Eq. (1)] for an infinite, one-dimensional
antiferromagnet. The following relation has been found:
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J
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The main difference between the finite and the infinite
system is the discrete character of @! ¼ EðkÞ for finite
antiferromagnets.
Mathematically, the two peak groups correspond to two

solutions of the LLG equation. Physically, they correspond
to two kinds of spin wave modes n and n0. The modes are
defined by the number of nodes of a standing wave. The
first six spin wave modes (n ¼ 0; . . . ; 2, n0 ¼ 0; . . . ; 2) for
a chain with a fixed end at x ¼ 0 are shown in Fig. 2 (left).
The fast oscillations correspond to the two sublattices with
opposite orientation of magnetization, which rotate in
opposite directions, while the envelope describes the stand-
ing wave. In the case of one or two open ends the n and n0
differ by the character of the oscillation of the open end(s).
As can be seen from Fig. 2 (left) the n modes finish before
the maximum, while the n0 ones finish after the maximum.
This behavior is really unique and has no equivalent

either in ferromagnetic systems nor in acoustics, where
the open ends always show a maximal amplitude. In order
to understand this interesting phenomenon we have ana-
lyzed the phases of n and n0 modes. An example for chains
with two open ends is given in Fig. 2 (right). One can see
that an n0 (n) mode can always be continued in an n (n0)
mode. The physical reason is the following: because of the
existence of two sublattices two different solutions of the
LLG equation are required. The two solutions may have
identical energy. The identical energy for both sublattices
(two possible solutions of the LLG) requires identical
periodicity and phase of the sublattice standing waves,
which is not allowed because of the orthonormality of
two solutions. In order to relieve the degeneracy, two
modes of identical periodicity but shifted in phase are
formed. The average energy of these modes is equal to
the energy of a conventional mode Ec ending at maximal
amplitude ðEn þ En0 Þ=2 ¼ Ec [see Fig. 2 (right)]. By that
means the system reaches a minimal possible energy and,
at the same time, assures two different solutions for the
dynamics of staggered magnetization. Thus, the energy
splitting is a compromise between the energy minimization
and the complexity of the antiferromagnetic structure.
While the two energy levels lie on the same dispersion

curve at zero external static magnetic field, they can be
separated when an external field is switched on. Figure 3
gives an example of this band splitting as follows from
Eq. (4) for zero anisotropy. For finite anisotropy the two
bands are additionally shifted to higher energies corre-
sponding to the value of anisotropy. The error bars in
Fig. 3 come from the fact that the wave numbers have
been determined statistically. We conclude from our analy-
sis that the spin wave modes in applied field are not
sinusoidal any more. This seems to be a direct consequence
of the fact that n0 modes shift to higher frequencies with
increasing magnetic field, whereas n modes shift in the
opposite direction (see inset of Fig. 3).
The case of a chain with two fixed ends is especially

interesting as it includes two different realizations of
boundary conditions: (i) both ends belong to the same
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FIG. 1 (color online). Spatially resolved signal Pav and dis-
persion of standing spin waves in an antiferromagnetic spin
chain with one fixed end and anisotropy (Dz=J ¼ 0:001). A
detailed description of the nomenclature is given in the text.
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sublattice, (ii) the ends belong to different sublattices. First
we discuss possibility (i). The chains belonging to case (i)
can be constructed only from an odd number of atomic
sites. This fact determines a number of interesting proper-
ties of such chains. The dispersion curve and an example of
a standing wave for antiferromagnetic chains of case (i) are
shown in Fig. 4. The first remarkable feature of the stand-
ing wave is its asymmetry. Second, the dispersion curve
does not show an energy splitting characteristic for chains
with open ends; it means that n0 nodes are extinct. Third,
the edges pinned at the same sublattice cause a degeneracy
of the two solutions: no odd modes can be found anymore
(see Fig. 4).

The reason for the asymmetry of the standing wave
described above can be understood on the basis of the
following symmetry considerations. Each lobe of the
standing wave (the black envelope function in Fig. 4)
contains the higher-frequency oscillations of the sublatti-

ces [gray (red) sinusoidal curve in Fig. 4]. The number of
these oscillations depends on the position of the node of the
envelope function. From the point of view of the kinetic
energy, the nodes should be preferentially positioned be-
tween atomic sites. This effect is similar to Peierl’s insta-
bility for spin density waves where the doubling of the
period of the wave vector leads to an envelope wave,
having nodes between the atomic sites. The positioning
of the nodes of the standing wave between atomic sites is
easy for a chain with one or two open ends. This possibil-
ity, however, becomes forbidden if both fixed chain ends
belong to the same sublattice. The prohibition is caused by
the fact that the positioning of the nodes between atomic
sites will lead to the different number of oscillations be-
tween neighboring nodes of the standing wave, which is
incompatible with the periodicity requirements. Therefore,
the nodes n lie on atomic sites. This configuration leads to
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FIG. 2 (color online). Left: First six spin wave modes of a chain with one fixed end and the anisotropy (Dz=J ¼ 0:001).
Right: Splitting of a conventional c mode into n and n0 modes in antiferromagnetic chains with open ends.
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FIG. 4 (color online). Dispersion relation and standing spin
wave of a chain with ends fixed at the same sublattice [case (i),
l ¼ 78a, i.e., 79 lattice sites]. The solid line represents the
analytical prediction.
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FIG. 3. Band splitting of the dispersion curve at an external
field of �sBz=J ¼ 0:01. The straight lines and the dashed line
correspond to the analytical predictions given by Eq. (4) with
and without external field, respectively (Dz=J ¼ 0).
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several important consequences. First, only an even num-
ber of nodes is possible. This explains the absence of odd
n’s. Second, the on-site placement of n assures the period-
icity of the whole pattern; i.e., each lobe of the wave
pattern contains an identical number of smaller oscilla-
tions. However, the number of positive and negative oscil-
lations in each lobe differs by one. Thereby the number of
negative oscillations in a lobe j is equal to the number of
positive ones in the neighboring lobe j� 1. This peculiar-
ity leads to the asymmetry of the whole pattern.

Chains of type (ii) may only have an even number of
atomic sites. For chains of type (ii) the nodes of the
standing wave can easily form between two atomic sites.
Therefore, both n and n0 modes can be found (see Fig. 5).
Interestingly, no odd n modes and no even n0 modes have
been found in the simulations. The existing nmodes of odd
parity (see bottom inset in Fig. 5) are very similar to those
of even n modes of case (i); i.e., the sublattices oscillate in
antiphase. The oscillations do not show any asymmetry as
the number of positive and negative oscillation is equal in
each lobe of the envelope function. The even n modes (see
upper inset in Fig. 5) are very unusual. Both sublattices are
oscillating in phase with the applied field, but the corre-
sponding standing waves are shifted with respect to each
other by 4–5 interatomic distances. Additionally, an asym-
metry of two standing waves can be observed. These two
regimes can be regarded as antiferromagnetic acoustical
and optical standing spin waves and can be visualized as a
superposition of two ferromagnetic standing spin waves for
different sublattices.

In summary, we have demonstrated that quantized spin
waves do exist in antiferromagnets. The characteristics of
the antiferromagnetic standing waves have no equivalents
in either acoustics nor in ferromagnetic samples.
Particularly, the discrete energy dispersion is split into n
and n0 modes because of the existence of two sublattices.
The splitting of the dispersion curve, the configuration of
oscillations, as well as the symmetry of standing waves,
strongly depend on the boundary conditions. In chains with
open boundaries we find spin wave modes of odd and even
parity in n as well as in n0 energy levels. The phases of
oscillations in n and n0 bands are shifted by one eighth of
the wave vector, while the average energy of both oscil-
lations is equal to the energy of a conventional, unshifted
mode. The chains with pinned ends can be subdivided into
two main cases: the ones with both ends belonging to the
same sublattice and that have the ends at different sublat-
tices. In the first case the energy splitting does not appear
and the n0 modes of odd parity do not exist. A very
particular asymmetry of the envelope function has been
observed for this geometry. In the second case the energy
splitting is recovered. Very peculiar acoustical and optical
antiferromagnetic spin waves have been found if the two
ends belong to the same sublattice. The unusual behavior is
explained on the basis of symmetry considerations.
Discussions with A. Kubetzka and N. Mikuszeit are
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FIG. 5 (color online). Acoustic (even n, filled circles) and
optical (odd n, open squares) standing antiferromagnetic spin
waves in chains with ends fixed at different sublattices [case (ii),
l ¼ 79a, i.e., 80 lattice sites]. The straight line corresponds to
the analytical solution.
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