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The problem of quantum transport in chaotic cavities with broken time-reversal symmetry is shown to

be completely integrable in the universal limit. This observation is utilized to determine the cumulants and

the distribution function of conductance for a cavity with ideal leads supporting an arbitrary number n of

propagating modes. Expressed in terms of solutions to the fifth Painlevé transcendent and/or the Toda

lattice equation, the conductance distribution is further analyzed in the large-n limit that reveals long

exponential tails in the otherwise Gaussian curve.
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Introduction.—The low temperature electronic conduc-
tion through a cavity exhibiting chaotic classical dynamics
is governed by quantum phase-coherence effects [1,2]. In
the absence of electron-electron interactions [3–5], the
most comprehensive theoretical framework by which the
phase coherent electron transport can be explored is pro-
vided by the scattering S-matrix approach pioneered by
Landauer [6]. There exist two different, though mutually
overlapping, scattering-matrix descriptions [7] of quantum
transport.

A semiclassical formulation [8] of the S-matrix ap-
proach is tailor-made to the analysis of energy-averaged
charge conduction [9] through an individual cavity.
Representing quantum transport observables (such as con-
ductance, shot-noise power, transferred charge, etc.) in
terms of classical trajectories connecting the leads attached
to a cavity, the semiclassical approach [10] efficiently
accounts for system-specific features [11] of the quantum
transport. Besides, it also covers the long-time scale uni-
versal transport regime [12] emerging in the limit [13]
�D � �E, where �D is the average electron dwell time
and �E is the Ehrenfest time (the time scale where quantum
effects set in).

The latter universal regime [14] can alternatively be
studied within a stochastic approach [4,15] based on a
random matrix description [16] of electron dynamics in a
cavity. Modeling a single electron Hamiltonian by an
M�M random matrix H of proper symmetry, the sto-
chastic approach starts with the Hamiltonian Htot of the
total system comprised by the cavity and the leads:

Htot ¼
XM
k;‘¼1

c y
kH k‘c ‘ þ

XNLþNR

�¼1

�y
�"F��

þ XM
k¼1

XNLþNR

�¼1

ðc y
kW k��� þ �y

�W
�
k�c kÞ: (1)

Here, c k and �� are the annihilation operators of electrons
in the cavity and in the leads, respectively. Indices k and ‘

enumerate electron states in the cavity: 1 � k, ‘ � M, with
M ! 1. Index � counts propagating modes in the left
(1 � � � NL) and the right (NL þ 1 � � � N) lead.
The M� N matrix W describes the coupling of elect-
ron states with the Fermi energy "F in the cavity to those
in the leads; N ¼ NL þ NR is the total number of prop-
agating modes (channels). Since in Landauer-type the-
ories the transport observables are expressed in terms of
the N � N scattering matrix [5]

S ð"FÞ ¼ 1� 2i�W yð"F �H þ i�WW yÞ�1W ;

(2)

the knowledge of its distribution is central to the stochastic
approach. [Two such observables—the conductance G ¼
trðC1SC2SyÞ and the shot-noise power P ¼ trðC1SC2SyÞ �
trðC1SC2SyÞ2 measured in proper dimensionless units
[4]—are of most interest. Here, C1 ¼ diagð1NL

; 0NR
Þ and

C2 ¼ diagð0NL
;1NR

Þ are the projection matrices].

For random matricesH drawn from rotationally invari-
ant Gaussian ensembles [17], the distribution of Sð"FÞ is
described [15] by the Poisson kernel [18–20]

PðSÞ / ½detð1� �SSyÞ detð1� S �SyÞ��=2�1��N=2: (3)

Here, � is the Dyson index [17] accommodating system

symmetries (� ¼ 1, 2, and 4) while �S is the average

scattering matrix [4], �S ¼ Vydiagð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �j

q
ÞV, that char-

acterizes couplings between the cavity and the leads in
terms of tunnel probabilities [21] �j of jth mode in the

leads (1 � j � N); the matrix V is V 2 GðNÞ=GðNLÞ �
GðNRÞ where G stands for orthogonal (� ¼ 1), unitary
(� ¼ 2) or symplectic (� ¼ 4) group.
The above description becomes particularly simple for

chaotic cavities that coupled to the leads through ballistic
point contacts (‘‘ideal’’ leads, �j ¼ 1). Indeed, uniformity

of PðSÞ over GðNÞ implies that scattering matrices S
belong [22] to one of the three Dyson circular ensembles
[17] about which virtually everything is known.
Notwithstanding this remarkable simplicity, available ana-
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lytic results for statistics of electron transport are quite
limited [4,23]. In particular, distribution functions of con-
ductance and shot-noise power, as well as their higher
order cumulants, are largely unknown for an arbitrary
number of propagating modes, NL and NR, and thus do
not catch up with existing experimental capabilities [24].

In this Letter, we combine a stochastic version of the
S-matrix approach with ideas of integrability [25,26] to
show that the problem of universal quantum transport in
chaotic cavities with broken time-reversal symmetry
(� ¼ 2) is completely integrable. Although our theory
applies [27] to a variety of transport observables, the
further discussion is purposely restricted to the statistics
of Landauer conductance. This will help us keep the pre-
sentation as transparent as possible.

Conductance distribution.—In order to describe fluctua-
tions of the conductance G ¼ trðC1SC2SyÞ in an adequate
way, one needs to know its entire distribution function. To
determine the latter, we define the moment generating
function

F nðzÞ ¼ hexpð�zGÞiS2CUEð2nþ�Þ; (4)

which, in accordance with the above discussion, involves
averaging over scattering matrices S 2 CUEð2nþ �Þ
drawn from the Dyson circular unitary ensemble [17].
For the sake of convenience, we have introduced the
notation n ¼ minðNL;NRÞ and � ¼ jNL � NRj so that the
total number NL þ NR of propagating modes in two leads
equals 2nþ �.

While the averaging in Eq. (4) can explicitly be per-
formed with the help of the Itzykson-Zuber formula [28], a
high spectral degeneracy of the projection matrices C1 and
C2 makes this calculation quite tedious. To avoid unneces-
sary technical complications, it is beneficial to employ a
polar decomposition [19] of the scattering matrix. This
brings into play a set of n-transmission eigenvalues T ¼
ðT1; � � � ; TnÞ 2 ð0; 1Þn which characterize the conductance
[6] in a particularly simple manner, GðTÞ ¼ P

n
j¼1 Tj.

The uniformity of the scattering S-matrix distribution
gives rise to a nontrivial joint probability density function
of transmission eigenvalues in the form [29,30]

PnðTÞ ¼ c�1
n �2

nðTÞ
Yn
j¼1

T�
j : (5)

Here �nðTÞ ¼
Q

j<kðTk � TjÞ is the Vandermonde deter-

minant and cn is the normalization constant [17]

cn ¼ Yn�1

j¼0

�ðjþ 2Þ�ðjþ �þ 1Þ�ðjþ 1Þ
�ðjþ �þ nþ 1Þ : (6)

Let us stress that the description based on Eq. (5) is
completely equivalent to the original, microscopically mo-
tivated S 2 CUEð2nþ �Þ model.

Now the moment generating function can elegantly be
calculated. A close inspection of the integral

FnðzÞ ¼ c�1
n

Z
ð0;1Þn

Yn
j¼1

dTjT
�
j expð�zTjÞ ��2

nðTÞ (7)

reveals that it admits the Hankel determinant representa-
tion [25]

FnðzÞ ¼ n!

cn
det½ð�@zÞjþkF1ðzÞ�; (8)

with

F1ðzÞ ¼ ð�þ 1Þ!
z�þ1

�
1� e�z

X�
‘¼0

z‘

‘!

�
: (9)

In deriving Eqs. (8) and (9) we have used the Andréief–
de Bruijn integration formula [31].
Equation (8), supplemented by the ‘‘initial condition’’

F 0ðzÞ ¼ 1, has far-reaching consequences. Indeed, by vir-
tue of the Darboux theorem [32], the infinite sequence of
the moment generating functions (F1, F2,. . .) obeys the
Toda lattice equation (n � 1)

FnðzÞF 00
nðzÞ � ½F 0

nðzÞ�2 ¼ varnðGÞFn�1ðzÞFnþ1ðzÞ;
(10)

where varnðGÞ ¼ nðnþ 1Þ�1ðcn�1cnþ1=c
2
nÞ is nothing but

the conductance variance

var nðGÞ ¼ n2ðnþ �Þ2
ð2nþ �Þ2½ð2nþ �Þ2 � 1� : (11)

Since FnðzÞ is the Laplace transform of conductance
probability density fnðgÞ ¼ h�ðg�GÞi, the Toda lattice
equation provides an exact solution [33] to the problem of
conductance distribution in chaotic cavities with an arbi-
trary number of channels in the leads. Equations (9)–(11)
represent the first main result of the Letter.
There exists yet another way to describe the conduc-

tance distribution. Spotting that the moment generating
function FnðzÞ is essentially a Fredholm determinant [34]
associated with a gap formation probability [17] within the
interval (z, þ1) in the spectrum of an auxiliary n� n
Laguerre unitary ensemble,

FnðzÞ / z�nðnþ�Þ Z
ð0;zÞn

Yn
j¼1

d�j�
�
j e

��j ��2
nð�Þ; (12)

one immediately derives [34,35]:

FnðzÞ ¼ exp

�Z z

0
dt

�VðtÞ � nðnþ �Þ
t

�
: (13)

Here,�VðtÞ satisfies the Jimbo-Miwa-Okamoto form of the
Painlevé V equation [36]

ðt�00
VÞ2 þ ½�V � t�0

V þ 2ð�0
VÞ2 þ ð2nþ �Þ�0

V�2
þ 4ð�0

VÞ2ð�0
V þ nÞð�0

V þ nþ �Þ ¼ 0 (14)

subject to the boundary condition �Vðt ! 0Þ ’ nðnþ �Þ.
To the best of our knowledge, this is the first ever

appearance of Painlevé transcendents in problems of quan-
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tum transport. The representation Eq. (13), being the second main result of the Letter, opens a way for a nonperturbative
calculation of conductance cumulants.

Conductance cumulants.—Our third main result is the bilinear recurrence relation (j � 2)

½ð2nþ �Þ2 � j2�ðjþ 1Þ	jþ1 ¼ 2
Xj�1

‘¼0

ð3‘þ 1Þðj� ‘Þ2 jþ 1
‘þ 1

� �
	‘þ1	j�‘ � ð2nþ �Þð2j� 1Þj	j � jðj� 1Þðj� 2Þ	j�1

(15)

for conductance cumulants f	jg. Taken together with the
initial conditions provided by the average conductance
	1 ¼ nðnþ �Þ=ð2nþ �Þ and the conductance variance
	2 ¼ 	2

1=½ð2nþ �Þ2 � 1�, this recurrence efficiently gen-
erates (previously unavailable) conductance cumulants of
any given order.

To prove Eq. (15), we compare Eq. (13) with the defi-
nition of the cumulant generating function

logFnðzÞ ¼
X1
j¼1

ð�1Þj
j!

	jz
j (16)

to deduce the remarkable identity

�VðzÞ ¼ nðnþ �Þ þ X1
j¼1

ð�1Þj
ðj� 1Þ!	jz

j: (17)

Substituting it back to Eq. (14), we discover Eq. (15) as
well as the above stated initial conditions.

Large-n limit of the theory.—The nonpeturbative solu-
tion Eq. (15) has a drawback: it does not supply much
desired explicit dependence of conductance cumulants 	j’s

on j. To probe the latter, we turn to the large-n limit of the
recurrence Eq. (15). For simplicity, the asymmetry parame-
ter � will be set to zero.

Since, in the limit of a large number of propagating
modes (n � 1), the conductance distribution is expected
[37] to follow the Gaussian law

fð0Þn ðgÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�var1ðGÞ

p exp

�
�ðg� n=2Þ2

2var1ðGÞ
�

(18)

with the average conductance E ½G� ¼ n=2 and the con-
ductance variance var1ðGÞ ¼ 1=16, it is natural to seek a
large-n solution to Eq. (15) in the form 	j ¼ ðn=2Þ�j;1 þ
ð1=16Þ�j;2 þ �	j, where �	j (with j � 3) account for

deviations from the Gaussian distribution. Next, we put
forward the large-n ansatz

�	j ¼ 1

nj
X1
m¼0

amðjÞ
nm

; (19)

which, after its substitution into the recurrence, yields the
explicit formula

�	2j ¼ 1

4

ð2j� 1Þ!
ð4nÞ2j

�
1þ jð3j2 � 1Þ

8n2
þO

�
1

n4

��
: (20)

All odd order cumulants vanish identically.
Interestingly, Eq. (20) makes it possible to analytically

study a deviation of conductance distribution fnðgÞ from
the Gaussian law fð0Þn ðgÞ. The Gram-Charlier expansion

fnðgÞ ¼ exp

�X1
j¼1

�	j

j!
ð�@gÞj

�
fð0Þn ðgÞ (21)

is the key. As soon as j@g logfð0Þn ðgÞj 	 n, the operator in

the exponent is dominated by the m ¼ 0 term in Eq. (19).
This observation reduces Eq. (21) to

fnðgÞ ¼ 2n1=4

�ð1=8Þ

ffiffiffiffi
2

�

s Z 1

0

d�e�n2�

�7=8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�

p exp

�
� 2n2
2

1þ 2�

�
:

(22)

Here, 
 is the rescaled conductance 
 ¼ 2ðg=nÞ � 1.
Equation (22) is particularly suitable for the asymptotic

analysis. Performed with a logarithmic accuracy, it brings

logfnðgÞ 	
��2n2
2; j
j< 1

2�2n2ðj
j � 1
4Þ � 3

4 log n;
1
2 < j
j< 1

:

(23)

This result shows that the Gaussian approximation for the
conductance distribution is only valid for jg�n=2j<n=4.
Away from this region, the conductance distribution ex-
hibits long tails described by the exponential rather than
the Gaussian law. Finally, it is straightforward to de-
rive from the Toda lattice Eq. (10) that, in the vicinity
jg� g�j � 1 of the edges [33] g� ¼ 0 and g� ¼ n, the
conductance distribution exhibits even slower, power-law
decay [20,23]

logfnðgÞ 	 ðn2 � 1Þ logð2j
� 
�jÞ � n2

2
þ 1

12
log n

(24)

with 
� ¼ 
1.
Conclusions.—We have shown that a marriage between

the scattering S-matrix approach and the theory of inte-
grable systems brings out an efficient formalism tailor
made to analysis of the universal aspects of quantum
transport in chaotic systems with broken time-reversal
symmetry. Having chosen the paradigmatic problem of
conductance fluctuations in chaotic cavities with ideal
leads as an illustrative example, we determined the cumu-
lants of conductance as well as its distribution exactly for
any given number of propagating modes in the leads. It
should be stressed that the ideas presented in the Letter can
equally be utilized [27] to describe statistical properties of
the shot-noise power and the dynamics of charge transfer.
Certainly, more effort is needed to accomplish integrable

theory of the universal quantum transport. Extension of the
formalism presented to the � ¼ 1 and 4 symmetry classes

PRL 101, 176804 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

24 OCTOBER 2008

176804-3



and waiving the uniformity of the S-matrix distribution are
the two most challenging problems whose solution is very
much called for.

This work was supported by the Israel Science
Foundation through the Grant No 286/04.

Note added.—Recently, we learned about the paper by
M. Novaes [38] who noticed that the nth moment of con-
ductance can nonperturbatively be calculated by using the
machinery of hypergeometric functions of matrix argu-
ment. Neither Toda lattice nor Painlevé V representations
for the conductance distribution surfaced there.
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