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The purpose of this work is to understand the effect of an external environment on the adiabatic

dynamics of a quantum critical system. By means of scaling arguments we derive a general expression for

the density of excitations produced in the quench as a function of its velocity and of the temperature of the

bath. We corroborate the scaling analysis by explicitly solving the case of a one-dimensional quantum

Ising model coupled to an Ohmic bath.
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The understanding of the nonequilibrium dynamics of
strongly correlated quantum systems is one of the most
challenging problems of modern condensed matter phys-
ics. Interest in this subject has been revived recently by
unprecedented experimental breakthroughs in the context
of cold atomic gases (see, e.g., [1]). Nonequilibrium con-
ditions in cold gases can be realized controllably in various
ways, e.g., by a proper choice of the initial state, or by
changing the Hamiltonian in time. In view of the variety of
situations that can be studied in this context, it is of
paramount importance to find paradigmatic situations
that allow the general features of the nonequilibrium dy-
namics of many-body systems to be understood. One such
paradigm is obtained when the parameters of a quantum
system close to a quantum phase transition are varied in
time in such a way as to traverse a quantum critical point.
Because of the vanishing of the gap � at criticality, a finite
density of defects is generated, no matter how slow the
quench, as first shown in Refs. [2,3]. The density of defects
is a universal scaling function of the quench velocity v, as
in the Kibble-Zurek (KZ) mechanism [4] originally de-
rived for classical continuous phase transition. In addition
to its intrinsic interest, this problem is relevant to adiabatic
quantum computation [5] and quantum annealing [6].

The intense theoretical activity following Refs. [2,3] has
clarified several important issues (see [7] and references
therein) on the adiabatic, phase coherent dynamics of
closed many-body critical systems. Closed systems, how-
ever, are only idealizations: any quantum system is weakly
coupled to an environment inducing relaxation and dephas-
ing. This observation motivated a series of recent studies,
in particular, on the effect of classical [8] and quantum [9]
noise acting uniformly on a quantum Ising chain, and on
the effect of local noise on a disordered Ising chain with up
to 20 spins [10]. However, the most natural and important
question remained answered: to what extent is it possible to

describe universally the production of defects in an adia-
batic quench in the presence of dissipation and dephasing?
In this Letter, we answer this question by showing with a
general scaling analysis that even in the presence of an
external environment the adiabatic dynamics of open criti-
cal systems is governed by universal scaling laws (with
modified exponents). To support this statement, we solve
by means of quantum kinetic equations the adiabatic dy-
namics of a quantum Ising chain coupled to a local external
environment, leading to the relaxation of all quasiparticle
modes.
Scaling analysis of defect formation.—At equilibrium,

all the characteristic features of a quantum phase transition
leave an imprint at low temperatures, leading, close to the
quantum critical point, to a crossover at temperatures T �
�. For T � �, the low frequency dynamics can be de-
scribed semiclassically in terms of quasiparticle excita-
tions, while in the quantum critical region (red region in
Fig. 1) T � � and quasiparticle excitations no longer exist
[11]. The purpose of the analysis below is to discuss the
universal fingerprints left on the nonequilibrium dynamics

FIG. 1 (color online). A sketch of the crossover diagram at
finite temperatures due to the presence of the quantum critical
point, where the gap � ! 0. The system traverses the quantum
critical region in a time tQC.
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by the quantum phase transition in the presence of a bath.
For this sake, we now start by presenting a scaling analysis
describing the influence of a bath at temperature T on the
production of defects.

We start by considering a linear quench of the control
parameter h from an initial value hi to a final one hf across

the critical point hc at a speed v. The system is initially in
equilibrium with the bath, whose temperature T is kept
constant during the quench. This is sketched in Fig. 1. The
passage through the quantum critical region (T � �) leads
to substantial heating effects because of the relatively high
bath temperature with respect to the characteristic energy
scale � for the system excitations. We shall see that, as
long as this is the most important time interval for the bath-
systems interaction, only the low energy details of the
system spectrum matter, and universality holds.

The universality of the defect production in the presence
of a bath follows from two conditions, discussed below.
First of all, the density of excitations E can be written as

E ’ EKZ þ Einc; (1)

where EKZ is the coherent contribution, present also in a
closed system, and Einc is the incoherent one due to the
presence of the bath. For a closed system, the density of

excitations was found to scale as EKZ / vd�=ðz�þ1Þ [2,3],
where d is the spatial dimension of the system and �; z are
the correlation length and the dynamical critical exponents,
respectively. Moreover, we assume that the bath does not
influence the system in the semiclassical regions (T � �).
Hence, we consider thermal excitations predominantly
created inside the quantum critical region, where T � �,
at a rate ��1 / �T�, � being the system-bath coupling
constant. The dynamics for the population of the (excited)
mode k is thus governed by the rate equation d

dt Pk ¼
���1½Pk � Pth

k ðhcÞ�, where Pth
k ðhcÞ is the critical thermal

equilibrium distribution inside the quantum critical region.

Integrating this rate equation we obtain PkðhfÞ � ð1�
e���1tQCÞPth

k ðhcÞ, where tQC ¼ 2T1=�zv�1 is the time spent

going through the quantum critical region (see Fig. 1),
whose boundaries are given by T � �� jh� hcj�z.
Integrating over all k modes we obtain

E inc / ð1� e�tQC=�Þ
Z

dEEd=z�1Pth
k ðhcÞ; (2)

where we used the scaling of the critical energy E / kz.
Finally, since the thermal distribution Pth

k is a function of

E=T, changing variable to E=T leads to

E inc / �v�1T�þðd�þ1Þ=�z; (3)

valid in the limit T1=�z � v�. The v�1 scaling of Einc is
directly related to the time spent inside the quantum critical
region. The crossover from the coherent to the incoherent
defect production is reached when Einc ’ EKZ, giving

vcross / �ð�zþ1Þ=½�ðzþdÞþ1�Tf1þð��1Þ�z=½�ðzþdÞþ1�gð1þ1=�zÞ:
(4)

The different scaling with v of EKZ and Einc implies that for
fast quenches, v > vcross, the KZ contribution dominates,
while for slower quenches, v < vcross, the incoherent con-
tribution due to the thermalization induced by the bath is
the most important.
Equations (1), (3), and (4) represent the generalization of

the scaling laws given in Refs. [2,3] to the case of open
quantum critical systems. They are in principle amenable
of an experimental verification and constitute the key result
of this work. In the case of a quantum Ising chain, which
we discuss in detail in the second part of this Letter, the
previous expressions specialize as follows. The time spent
within the quantum critical region scales as tQC ¼ 2Tv�1,

since � ¼ z ¼ 1. We consider an Ohmic bath that acts as a
random external magnetic field on each site [see Eq. (5)].
We find that the relaxation time in the quantum critical
region scales as ��1 ’ �T2 (see Fig. 2), i.e., � ¼ 2, in
agreement with a Fermi golden rule argument. It follows
that the contribution to the defect production induced by
the bath and the crossover velocity scale as Einc / �v�1T4

and vcross / �2=3T8=3, respectively (see Fig. 3).
Quantum Ising model and kinetic equations.—To sup-

port Eqs. (3) and (4) we now study the physics of a
quantum quench for a quantum Ising model coupled lo-
cally to a set of Ohmic baths. The locality of the system-
bath coupling causes the breaking of the translational
symmetry of the closed system, hence allowing the dis-
cussion of the quench dynamics in the presence of relaxa-
tion of all elementary excitations. Notice that no qualitative
new features are expected to emerge in the case where the
baths are correlated over a finite distance because (in the
scaling limit) the correlation length is the largest length
scale in the problem, and details of bath correlations over
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FIG. 2 (color online). ��1=T2 as a function of �=T (negative
values correspond to h < hc). Data are relative to different

distances � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ ðh� hcÞ2

p
from the quantum critical point.

Close to the critical point (� ! 0) all curves collapse into a
unique scaling function. Dashed line is a fit að1þ b�=TÞ�
expf��=Tg with a ’ 9:4ð6Þ and b ’ 0:9ð3Þ. Inset shows the data
collapse of ��1=�2 as a function of �=T for different values of
h: ��1 / expf��=Tg for T � �.
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microscopic distances should not matter. It is also impor-
tant to observe that long time correlations induced by the
bath may change the universality class of the transition
[12]. Despite the intrinsic interest of this issue, which
found recently application in the context of the physics
of cold atoms [13], we will not consider it here. Therefore,
we will further assume that the bosons have a nonzero
inverse lifetime � � T which provides a natural cutoff
time for the bath correlation functions.

The model we consider is then defined by the
Hamiltonian

H ¼ � J

2

XN
j

f�x
j�

x
jþ1 þ ½hðtÞ þ Xj��z

jg þHB: (5)

It consists of a chain of N spins (�x and �z are Pauli
matrices) with an Ising interaction and subject to a trans-
verse magnetic field hðtÞ. The bath couples to �z, with

Xj ¼ P
�	�ðby�;j þ b�;jÞ, where by�;j (b�;j) are the creation

(annihilation) operators for the bosonic bath modes

coupled to the jth spin. The bath Hamiltonian is HB ¼P
j;�!�b

y
�jb�j. The system-bath coupling is chosen to

have Ohmic spectral densities
P

�	
2
��ð!�!�Þ ¼

2�! expð�!=!cÞ, where !c is a high-energy cutoff
[14,15]. In the case of no coupling to the bath (� ¼ 0)
the system has a quantum phase transition at hc ¼ 1, and

for h < hc a spontaneous magnetization along x appears.
The gap � ¼ jh� hcj induces at finite temperature a
V-shaped crossover phase diagram [11], as sketched in
Fig. 1.
We now analyze the problem by deriving a quantum

kinetic equation which allows us to calculate the density of
defects produced after the quench. This procedure allows
us to describe the effect of the environment also in regimes
which are beyond the applicability of the scaling laws
deduced above, where universality is not expected to
hold. In order to describe the dynamics of (5) it is first
convenient to map the spins onto spinless fermions by
means of a Jordan-Wigner transformation. In momentum
space, the Hamiltonian (5) reads

H ¼ X
k>0

�y
kĤ k�k þ 1ffiffiffiffi

N
p X

k;q

�y
k �̂

z�kþqXq þHB; (6)

where Ĥ k ¼ �½cosðkÞ þ hðtÞ��̂z þ sinðkÞ�̂y, �̂ are Pauli

matrices in the Nambu space defined by the two-

component fermion �y
k ¼ ðcyk c�kÞ. When Xq ¼ 0, the

subspaces of the different k modes are decoupled, the
Hamiltonian is quadratic and can be diagonalized by a

Bogoliubov transformation yielding H¼P
k>0�kð
y

k
k�

�k


y
�kÞ with �k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h coskþ h2

p
. The interaction

with the bath causes a mixing of modes with different
momenta. We determine the density of excitations by
deriving a quantum kinetic equation for Green’s function
using the Keldysh technique [16]. This kinetic equation
will be expressed in terms of the fermion lesser Green’s

function Ĝ<, which is a 2� 2matrix in Nambu space with

components �i½G<
k ðt; tÞ�i;j � h�y

k;jðtÞ�k;iðtÞi. Using a

self-consistent Born approximation for the bath-mediated
scattering of kmodes, valid for weak bath-system coupling
� � 1, and the Markov approximation (justified by the
assumption of a cutoff time for the bosonic modes), we get

@tĜ
<
k þ i½Ĥ k; Ĝ

<
k � ¼

1

N

X
q

�̂zð1̂þ iĜ<
q ÞD̂qkĜ

<
k

þ �̂zĜ<
q D̂

y
kqð1̂þ iĜ<

k Þ þ H:c:;

(7)

where we neglect irrelevant Lamb shifts. Here D̂qk ¼
i
R1
0 dsg>ðsÞÛy

q ðt; t� sÞ�̂zÛkðt; t� sÞ, where g>ðtÞ ¼
�ihXqðtÞXqð0Þi, and Ûkðt0; tÞ is the evolution operator

satisfying i@tÛk ¼ Ĥ kðtÞÛk. Parametrizing �iĜ<
k ¼

1=2½1̂� ð1� 2PkÞ�̂z þ Ck�̂
þ þ C�

k�̂
�� after the

Bogoliubov transformation which diagonalizes Ĥ k, one

finds that Pk ¼ h
y
k
ki and Ck ¼ h
�k
ki. Therefore, the

density of defects produced can be expressed as

E ¼ �i

2N

X
k>0

Tr½ð1̂þ �̂zÞĜ<
k � ¼

1

N

X
k>0

Pk: (8)

By solving the kinetic equation (7) we are able to calculate
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FIG. 3 (color online). Left: Density of excitations E versus the
quench velocity v. Circles are obtained by integrating the kinetic
equation (KE); solid lines and dashed lines are Eq. (1) with Einc

given by (9) and its linearized expression, respectively. KZ
scaling EKZ / ffiffiffi

v
p

[2] is plotted for comparison as dotted lines.
Plots refer to N ¼ 400 and � ¼ 0:01 and T ¼ 0:15; 0:1; 0:07
(from top to bottom). The final values of magnetic field are hf ¼
0:8 (outside the quantum critical region for the values of T
considered) and the critical point hf ¼ 1. For hf ¼ 1 we con-

sidered tQC ¼ v�1T since only half of the quantum critical

region is crossed. (a) Data collapse of Einc obtained from the
kinetic equations by considering only incoherent thermal tran-
sitions [right-hand side of (7)]; data refer to both hf ¼ 0:8; 1 and

10�4 & v & 10�3. The fit verifies the scaling (3) Einc / v�1T4.
In (b) the scaling of vcross is obtained equating Einc from kinetic
equations to EKZ for hf ¼ 0:8; 1; the fit confirms the scaling

predicted by (4), vcross / T8=3.
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E in Eq. (8), and thus to analyze the Kibble-Zurek mecha-
nism in an Ising chain coupled to a bath. The results of this
analysis are presented below.

Kinetic equation and the scaling regime.—As discussed
in the first part of this Letter, in order to determine the
scaling at finite temperature we need to know the relaxa-
tion time � for the excitations. To this end, it is sufficient to
consider only the dynamics of the populations Pk in the
kinetic equation and neglect the off-diagonal components.
By linearizing the kinetic equation around the equilibrium
(Fermi) distribution, one gets @t�P ¼ �Rðh; TÞ�P,
where �P ¼ ðPk1 � Pth

k1
; . . . ; PkN=2

� Pth
kN=2

Þ. The character-
istic relaxation times of the system are the inverse eigen-
values of R. The leading asymptotics at long times for all
populations Pk is governed by the inverse of the smallest
eigenvalue 	1 ofR, � � 	�1

1 . By numerical inspection, we

find that ��1 � �T2fð�TÞe��=T (see Fig. 2).

The scaling obtained for the relaxation time, together
with an explicit integration of Eq. (2) for the Ising model,
lead to

E inc ’ log2

2�
Tð1� e�2T=ð�vÞÞ; (9)

which, in the limit 2T=�v � 1, confirms the scaling result
given in Eq. (3). In Fig. 3 the solution of the kinetic
equation is compared with the ansatz given in Eqs. (1)
and (9). The agreement is excellent, confirming our scaling
approach. The crossover value of v which signals the
transition from the coherent- to the incoherent-dominated
defect production obeys the power-law scaling given by
Eq. (4). At lower quench rates the full expression, Eq. (9),
is needed for an accurate comparison with the solution of
the kinetic equation.

On lowering the final value hf of the field, the agreement

with the scaling ansatz becomes worse at low quench rates
v (see Fig. 4). This is due to a noncritical relaxation
mechanism that depends strongly on the details of the

energy spectrum for hf < h < hc: Once the system leaves

the quantum critical region, entering the semiclassical
region where T � �, the bath starts to relax out the
excitations previously created; if time spent in the semi-
classical region is long enough all excitations disappear.
Outside of the weak coupling regime, when the relaxation
time and quench time are comparable, scaling is expected
to be recovered in thermodynamic quantities, such as total
energy, heat, entropy, and work done on the system [17].
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FIG. 4 (color online). Same as left panel of Fig. 3, but for hf ¼
0:6; curves are relative to T ¼ 0:15 only. Stars represent the
density of excitations produced incoherently by the bath and are
obtained by integrating the kinetic equations and ignoring the

unitary evolution term i½Ĥ k; Ĝ
<
k �, responsible for the coherent

excitation process. The nonmonotonic behavior is due to the
noncritical relaxation mechanism, that is more relevant at low v.
In the regime of slow v scaling no longer holds and only thermal
excitations contribute to E.
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