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We investigate electron and ion surface states of a negatively charged dust particle in a gas discharge

and identify the charge of the particle with the electron surface density bound in the polarization-induced

short-range part of the particle potential. On that scale, ions do not affect the charge. They are trapped in

the shallow states of the Coulomb tail of the potential and act only as screening charges. Using orbital-

motion limited electron charging fluxes and the particle temperature as an adjustable parameter, we obtain

excellent agreement with experimental data.
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Motivation.—The calculation of the charge of a macro-
scopic object in an ionized gas is one of the most funda-
mental problems of plasma physics. It occurs in space-
bound plasmas, where the charge of satellites is of interest
[1], in astrophysical plasmas, where one wants to know the
charge of interstellar grains [2], and in laboratory gas
discharges, where charged dust particles are either con-
taminants, which need to be controlled, or constituents,
whose collective properties are the subject of study [3,4].

For laboratory plasmas, the particle charge has been
measured in a number of experiments [5–9]. Throughout
it is thereby assumed that the particle’s surface potential,
and hence its charge, is the one which balances at the grain
surface the total electron with the total ion charging flux:
je ¼ ji. In almost all cases, however, the charges obtained
from this condition, which is equivalent to forcing the net
charge of the particle to be quasistationary, are too high.
Usually, the approximations for the fluxes, mostly orbital-
motion limited (OML) [10–12], are blamed for the dis-
agreement and various modifications of the OML theory
have been proposed. Although this leads sometimes to
reasonable quantitative results [5,6], we suspect on funda-
mental grounds that irrespective of the fluxes je ¼ ji is not
the condition which fixes the charge (or potential) of the
particle.

The condition je ¼ ji is part of the Boltzmann-Poisson
description of the plasma-particle interaction. Its natural
length scale is thus the length on which the Coulomb
potential varies. There are however microscopic processes
near the surface of the particle, most notable sticking and
desorption of electrons, which affect the charge but take
place on a much shorter length scale. Once these processes
are incorporated it is clear that the charge of the particle is
not determined by the quasistationarity of the net charge
but by the individual quasistationarity of the electron and
ion densities bound to the particle. This condition implies
the former but not vice versa. It is thus more restrictive and
leads to lower charges.

In this Letter we describe a surface model, which ac-
counts for plasma- and surface-induced processes, and

calculate the charge of the particle, and its partial screening
due to trapped ions, without relying on the condition je ¼
ji. Instead, we force the electron and ion densities bound to
the particle to be quasistationary by balancing, individually
on effective surfaces, electron and ion charging fluxes with
electron and ion desorption fluxes.
Surface states.—We start with an investigation of the

bound states in the static interaction potential of an elec-
tron (ion) and a dust particle with radius R, dielectric
constant �, and charge �eZp. The potential contains a

polarization-induced part, arising from the electric bound-
ary condition at the grain surface, and a Coulomb tail due
to the particle’s charge [13]. Defining � ¼ ð�� 1Þ=2ð�þ
1ÞZp, measuring distances from the grain surface in units

of R and energies in units of �U ¼ Zpe
2=R, the interaction

energy at x ¼ r=R� 1> xb, where xb is a cutoff below
which the grain surface is not perfect anymore, reads

Ve;iðxÞ ¼ � 1

1þ x
� �

xð1þ xÞ2ð2þ xÞ
�

�
1� �=2x electron

�1=ð1þ xÞ ion:
(1)

The second line approximates the relevant parts of the
interaction energy very well and permits an analytical
calculation of surface states. A gas discharge usually con-
tains enough electrons which can overcome the particle’s
Coulomb barrier �U�OðeVÞ. These are the electrons
which may get bound in the polarization-induced short-
range part of the potential, well described by the above
approximate expression. Ions, on the other hand, having a
finite radius rsizei =R ¼ xsizei � 10�4, cannot explore the
potential at these distances. The long-range Coulomb tail
is most relevant to them, which is again well described by
the approximate expression.
In order to determine bound states from the Schrödinger

equations corresponding to Ve;iðxÞ we have to specify

boundary conditions. Clearly, the wave functions ue;iðxÞ
have to vanish for x ! 1, irrespective of the potentials.
The boundary condition at xb, in contrast, depends on the
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potential for x � xb, that is, on the surface barrier. For our
purpose, it is sufficient to take the simplest barrier model:
Ve;iðx � xbÞ ¼ 1 with xb ¼ 0 for electrons and xb ¼ xsizei

for ions. The wave functions vanish then also at xb and the
surface states are basically rescaled hydrogen-type wave
functions.

The left panel of Fig. 1 shows s-type electron and ion
probability densities jue;iðxÞj2 (our reasoning does not

depend on the angular momentum) for a melamine-
formaldehyde (MF) particle (R ¼ 4:7 �m, � ¼ 8, and
Zp ¼ 6800) in a helium discharge with plasma density

ne � ni ¼ 0:62� 109 cm�3, ion temperature kBTi ¼
0:04 eV, and electron temperature kBTe ¼ 2:2 eV [14].
The Rydberg series of electron surface states is only a
few Angstroms away from the grain boundary. At these
distances, the spatial variation of VeðxÞ is comparable to
the de Broglie wavelength of electrons approaching the
particle: �dB

e =R� jVe=V
0
ej � 10�4. Hence, the trapping of

electrons at the surface of the particle is a quantum-
mechanical effect not included in the classical description
of the plasma-particle interaction. For ions, on the other
hand, the lowest surface states, which carry quantum-
mechanical features, are unimportant. Being cold and
heavy, ions will be bound in a continuum of states below
the ion ionization threshold which consists essentially of
classical trapped orbits, as can be seen from the juiðxÞj2 for
the state labeled by kð20 000Þ. That ions behave classically
is not unexpected. Their de Broglie wavelength is much
smaller then the scale on which the potential varies:
�dB
i =R� 10�5 � jVi=V

0
i j � 1 for x * 10�3.

Model.—We now use the properties of the surface states
to construct a model for the charge of the particle. Within
the sheath of the particle, the density of free electrons
(ions) is much smaller than the density of bound electrons
(ions). In that region, the quasistationary charge (in units of
�e) is thus approximately

ZðxÞ ¼ 4�R3
Z x

xb

dx0ð1þ x0Þ2½nbeðx0Þ � nbi ðx0Þ� (2)

with x < �D
i ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kTi=eni
p

, the ion Debye length, which we
take as an upper cutoff, and nbe;i the density of bound

electrons and ions. The results presented above suggest
to express the density of bound electrons by an electron
surface density: nbeðxÞ � �e�ðx� xeÞ=R with xe � xb � 0
and �e the quasistationary solution of

d�e=dt ¼ seje � ��1
e �e; (3)

where je is the electron charging flux from the plasma and
se and �e are, respectively, the electron sticking coefficient
and electron desorption time due to inelastic collisions
between electrons and the particle (see right panel in
Fig. 1). We will argue below that once the particle has
collected some negative charge, not necessarily the quasi-
stationary one, there is a critical ion orbit at xi � 1–10 	
xe which prevents ions from hitting the particle surface.
Thus, the particle charge is simply

Zp 
 Zðxe < x < xiÞ ¼ 4�R2ðs�Þeje: (4)

For an electron to get stuck at (to desorb from) a surface
it has to loose (gain) energy at (from) the surface. Since
electrons with rather low and rather high energies are,
respectively, reflected by the Coulomb and surface barrier
of the particle, sticking (desorption) primarily affects elec-
trons at energies slightly above �U. Assuming this group of
electrons after overcoming the Coulomb barrier to be in
quasiequilibrium with the surface electrons, absolute reac-
tion rate [15] allows us to estimate

ðs�Þe � h

kBTp

exp

�
Ed
e

kBTp

�
; (5)

where h is Planck’s constant, Tp is the particle temperature,

and Ed
e is the negative of the binding energy of the surface

state from which desorption most likely occurs. This phe-
nomenological equation relates a combination of kinetic
coefficients, which individually depend on the dynamic
interaction, to an energy which can be deduced from the
static interaction alone. To go beyond Eq. (5) necessitates a
quantum-kinetic treatment of the inelastic electron-particle
interaction.
Equation (4) is a self-consistency equation for Zp. More

explicitly, combined with Eq. (5), and using the OML
electron charging flux, which is a reasonable approxima-
tion because, on the plasma scale, electrons are repelled
from the particle, it reads
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FIG. 1. Left panel: Potential energy for an electron (ion) in the
field of a MF particle (R ¼ 4:7 �m, Z ¼ 6800) [14] and s-type
probability distributions shifted to the binding energy and max-
ima normalized to one. Dashed lines are the potentials used in
the Schrödinger equations and thin lines are the bulk energy
distribution functions for the hosting discharge. Right panel:
Illustration of the surface model to be discussed in the main
text. At quasistationarity, surface charges �e;i bound at re � R
and ri � ð2��cxngÞ�1, respectively, balance charging fluxes

se;ije;i with desorption fluxes ��1
e;i �e;i.
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Zp ¼ 4�R2 h

kBTp

eE
d
e=kBTpjOML

e ðZpÞ (6)

with jOML
e ¼ ne

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=2�me

p
exp½�Zpe

2=RkBTe�. Thus,

Zp depends on the radius R, the plasma parameters ne
and Te, and the surface parameters Tp and Ed

e .

Results.—To estimate Ed
e we imagine an electron with

energy just above �U approaching the grain. By necessity, it
comes very close to the surface (see left panel in Fig. 1).
For any realistic surface barrier, the wave function will
therefore leak into the grain and the electron will strongly
couple to the excitations of the grain which provide the
thermal reservoir encoded in Tp. Hence, the electron will

quickly relax to the lowest surface state. The n ¼ 1 state
for the infinitely high barrier is an approximation to that
state. Thus, Ed

e � R0ð�� 1Þ2=16ð�þ 1Þ2, where R0 is the
Rydberg energy. Tp cannot be determined as simply. It

depends on the heating and cooling fluxes to and from the
grain and thus on additional surface parameters [16]. We
use Tp therefore as an adjustable parameter. To reproduce,

for instance, with Eq. (6) the charge of the particle in
Fig. 1, Tp ¼ 395 K implying Ed

e � 0:51 eV and ðs�Þe �
0:4� 10�6 s.

In Fig. 2 we analyze within our approach the pressure
dependence of the charge of a MF particle with R ¼ 1 �m
in the bulk of the neon discharge of Ref. [5]. Since the
plasma parameters entering Eq. (6) are known [5], Tp is

again the only free parameter. Fixing Tp at a particular

value gives the isothermal particle charges ZpðTpÞ. From
ZpðTpÞ ¼ Zexp follows then the Tp required to reproduce

the data. The predicted increase of Tp with pressure is

realistic. Indeed, assuming Tp ’ Tg, with Tg the gas

temperature, Tp is in accordance with what one would

expect from the pressure dependence of Tg in noble gases

[16]. For comparison we also plot the particle charges

deduced from jOML
e ¼ jOML

i þ jCXi with jOML
i ¼

ni
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTi=2�mi

p ½1þ Zpe
2=RkBTi� the OML ion charging

flux and jCXi ¼ nið0:1�D
i =lcxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTi=2�mi

p ðZpe
2=RkBTiÞ2

the ion flux due to charge-exchange (CX), where lcx ¼
ð�cxngÞ�1 is the scattering length, �cx is the cross section,

and ng ¼ p=kBTg is the gas density [5]. Although for

�cx ¼ 2� 10�14 cm2 (which may be unrealistically large
[17]) the agreement with the data is good, the radius
dependence of Zp at fixed pressure shown in the inset

indicates that something must be wrong with the flux
balance criterion. The data clearly appear to be closer to
the nonlinear R dependence obtained from the surface
model than to the linear one resulting from jOML

e ¼
jOML
i þ jCXi .
Figure 3, showing the R dependence of Zp for MF

particles confined in the sheath of an argon discharge [7],
provides additional support for our model. To approxi-
mately account for the fact that particles with different
radius experience different plasma environments, we in-
cluded the depletion of ne in the sheath by replacing ne in
jOML
e by ne exp½e�ðzeqðRÞÞ=kBTe� with �ðzÞ the sheath

potential and zeqðRÞ the equilibrium position of the particle

with radius R [7]. When the grains are not too deep in the
sheath (R< 5 �m), we find excellent agreement with the
data for Tp ¼ 420 K. Our approach fails, however, for R>

5 �m (see inset). We attribute this to the ad-hoc descrip-
tion of je which may not capture the total electron charging
flux close to the electrode.
Equation (6) depends on the assumption that once the

particle is negatively charged ions are trapped far away
from the grain surface. Indeed, a recent study based on the

FIG. 2. Pressure dependence of the charge of a MF particle
with R ¼ 1 �m in the neon discharge of Ref. [5] (squares). Solid
lines denote the (isothermal) charges deduced from the surface
model whereas dotted and dashed lines are the charges obtained
from jOML

e ¼ jOML
i þ jCXi . The inset shows the radius depen-

dence of the charge for p ¼ 50 Pa.
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FIG. 3. Radius dependence of the charge of a MF particle in
the sheath of an argon discharge at p ¼ 6:67 Pa [7] (squares).
Solid (dashed) lines give the charges deduced from the surface
model when the depletion of ne in the confining sheath is (is not)
included in the OML electron charging flux.
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Boltzmann-Poisson equations has shown that charge-
exchange collisions lead to a local pileup of ions in the
sheath of the particle [18,19]. We come to the same con-
clusion from the surface physics point of view. Similar to
an electron, an ion gets bound to the grain only when it
looses energy. Because of the long-range attractive ion-
grain interaction, the ion will be initially bound far away
from the grain surface (see left panel in Fig. 1). The
coupling to the excitations of the grain is thus negligible
and only inelastic processes due to the plasma are able to
induce transitions to lower bound states. Since the interac-
tion is classical, inelastic collisions, for instance, charge-
exchange between ions and atoms, act like a random force.
Energy relaxation can be thus envisaged as a destabiliza-
tion of orbits whose spatial extension is comparable to or
larger then the scattering length. Smaller orbits are unaf-
fected because the collision probability during one revolu-
tion is vanishingly small. For a circular orbit, a rough
estimate for the critical radius is ri ¼ Rð1þ xiÞ ¼
ð2��cxngÞ�1, which leads to xi � 5 	 xe � 0 when we

use the parameters of the helium discharge of Fig. 1 and
�cx ¼ 0:32� 10�14 cm2 [20]. Thus, there is a relaxation
bottleneck at xi and ions are trapped deep in the sheath of
the particle.

To determine the partial screening due to trapped ions
we model the ion density nbi accumulating in the vicinity of
the critical orbit by a surface density �i which balances at
xi the ion charging flux with the ion desorption flux (see
right panel in Fig. 1). Mathematically, this gives rise to a
rate equation similar to (3) but now for the ions. At
quasistationarity, the ion surface density is thus �i ¼
ðs�Þiji. Although Eq. (5) assumes excitations of the grain
to be responsible for sticking and desorption we expect a
similar expression (with Ed

e , Tp replaced by Ed
i , Tg) to

control the density of trapped ions. From Eq. (2) we then
obtain Zðxi < x < �D

i Þ ¼ Zp � Zi with

Zi ¼ 4�R2ð1þ xiÞ2 h

kBTg

eE
d
i ðZpÞ=kBTgjBi (7)

the number of trapped ions. Since the critical orbit is near
the particle-sheath-plasma boundary, it is fed by the Bohm

ion flux jBi ¼ 0:6ni
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBTe=mi

p
. The ion desorption energy

is the negative of the binding energy of the critical orbit,
Ed
i ðZpÞ ¼ �ViðxiÞ �UðZpÞ ¼ 4��cxaBngZpR0, and de-

pends strongly on Zp and xi. For the situation shown in

Fig. 1 we obtain Ed
i � 0:37 eV and ðs�Þi � 0:6� 10�8 s

when we use Tg ¼ Tp ¼ 395 K, the particle temperature

which reproduces Zp � 6800. The ion screening charge is

then Zi � 148 � Zp which is the order of magnitude

expected from molecular dynamics simulations [21].
Thus, even when the particle charge is defined by Zðxi <
x < �D

i Þ it is basically given by Zp.

Summary.—We constructed a surface model to calculate
the charge (partial screening) of a particle in a plasma by
balancing, on an effective surface, the electron (ion) charg-
ing with the electron (ion) desorption flux. The number of
electrons bound in the polarization potential determines
the charge of the particle. Using the grain temperature as an
adjustable parameter we obtained far better agreement
with measurements, in particular, with respect to the radius
dependence of the charge, then approaches based on bal-
ancing at the grain surface the total charging fluxes which
we argue is the wrong condition. It neglects the micro-
scopic processes determining the charge of the particle:
sticking and desorption of electrons at the grain surface.
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