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By extending traditional particle tracking techniques, we study the dynamics of neutrally buoyant

finite-sized particles in a spatiotemporally chaotic flow. We simultaneously measure the flow field and the

trajectories of millimeter-scale particles so that the two can be directly compared. While the single-point

statistics of the particles are indistinguishable from the flow statistics, the particles often move in

directions that are systematically different from the underlying flow. These differences are especially

evident when Lagrangian statistics are considered.
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Understanding the dynamics of transported particulate
matter in fluid flows is a longstanding problem with wide
applicability. In nature, for example, plant spores and
pathogens are carried by atmospheric flow [1]. Clouds
are suspensions of water droplets in turbulent air [2,3].
Fuel injectors transport droplets at supersonic speeds [4].
In addition, many modern flow measurement techniques,
including laser doppler anemometry, particle image veloc-
imetry, and particle tracking schemes require seeding the
flow with particles.

When the particles are very small, spherical, and neu-
trally buoyant, they behave as infinitesimal fluid elements.
In this limit, significant progress has been made in under-
standing their behavior during the past decade [5,6]. When
these conditions are not met, however, the particles may no
longer follow the flow. Instead, they behave as if they have
inertia relative to the carrier flow, responding to changes in
the underlying flow field only over a finite time. This
lagging effect is evident, for example, in the reduction of
the acceleration variance for such inertial particles in tur-
bulence [7–10]. Inertial particles have also been shown to
accumulate in particular regions of the flow: particles
denser than their carrier flow, for example, are ejected
from vortices and therefore congregate in regions of high
strain [11–15]. This preferential concentration leads to an
apparent clustering effect that is key, for example, in under-
standing the initiation of rainfall in warm clouds [2,3].

Particles may behave inertially and fail to follow the
flow for two reasons. If they have a density different from
the carrier flow, they take a finite time to respond to flow
accelerations. Even if they are neutrally buoyant, however,
particles of finite size can behave inertially since the flow
stresses are averaged over the particle surface [10,16,17].
The latter case has implications for flow measurements:
simply choosing particles of the same density as the fluid
does not imply that the particles will faithfully follow the
flow. The importance of both size and density are thought
to be captured by the Stokes number, the nondimensional
coefficient of the viscous drag term in the particle equation

of motion [18]. The Stokes number, defined as
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where �p and �f are the particle and fluid densities,

respectively, a is the particle radius, L is the characteristic
flow length scale, and Re is the Reynolds number of the
carrier flow, is high for dense or large particles or for strong
flow driving. In this Letter, we study the dynamics of
neutrally buoyant large particles in a quasi-two-
dimensional laboratory flow. In addition to the large parti-
cles, we also simultaneously measure the dynamics of very
small tracer particles that we assume to follow the flow to a
good approximation, in order to compare the inertial par-
ticles and the flow field directly. Though the Stokes num-
bers of our inertial particles are relatively small, we
observe measurable inertial effects, particularly for time-
resolved statistics.
Particles whose inertia comes purely from finite-size

effects are less well studied than their heavy counterparts
[10,16,17]. In numerical simulations, for example, it is
simpler to study a pointlike, heavy particle than to simulate
a large particle accurately, which would require solving the
Navier-Stokes equations along the particle surface.
Simulations also typically neglect some of the more com-
plex terms in the particle equation of motion [18], particu-
larly the Bassett history force, even though these terms
may in some situations be significant [19]. Experiments, of
course, do not have these difficulties, but have provided
limited information since they have not previously had
access to the underlying flow field. Ours is the first experi-
ment to provide the velocity field and inertial particle
information simultaneously.
We generate quasi-2D flow by driving a thin layer of an

electrolytic fluid electromagnetically [20]. A 3.5-mm-deep
layer of 17% KCl in water lies above a square lattice of
permanent magnets with alternating polarity; when a cur-
rent is driven across the fluid, Lorentz forces set it into
motion. The Reynolds number is given by Re ¼ UL=�,
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where U is the root-mean-square velocity, L ¼ 2:54 cm is
the magnet spacing, and � is the kinematic viscosity. In our
experiments, 72 � Re � 220, which is above the transi-
tion to spatiotemporal chaos for this flow [21]. As shown in
Fig. 1, the flow contains three sizes of neutrally buoyant
polystyrene particles. The smallest are 80 �m in diameter,
with 1:6� 10�4 � St � 4:5� 10�4; we therefore expect
them to follow the flow well. The larger particles have
diameters of d ¼ 0:92 mm (0:53� 10�2 � St �
1:6� 10�2) and d ¼ 2:00 mm (2:5� 10�2 � St � 7:6�
10�2). All three sizes of particles are non-Brownian. The
particles are slightly polydisperse: the standard deviation
of the diameter for the d ¼ 0:92 mm particles is � ¼
0:07 mm, while � ¼ 0:01 mm for the d ¼ 2:00 mm par-
ticles. To avoid any surface-tension-driven interactions
between the particles [22], we place a 3.5-mm-deep layer
of water above the salt solution; the particles lie at the
interface between the electrolyte and the water. Since the
two layers are miscible, there is no bulk surface tension
between them. By keeping the loading density of the large
particles low (see Fig. 1), we reduce the possibility of
particle collisions or other particle-particle interactions.
We image the particles at a rate of 30 Hz and with a
precision of approximately 13 �m (0.1 pixels); to avoid
boundary effects, we focus on a 7:5 cm� 7:5 cm region in
the center of the flow. Using tracking software [23], we
determine the trajectories of the three types of particles
independently; their velocities and accelerations are then
measured by fitting polynomials to short segments of the
trajectories [24]. In order to resolve the velocity field well,
there are roughly 15 000 tracers in the measurement area at
any time. Even with this loading density, we calculate that

interactions between the tracer particles are generally
negligible.
As mentioned above, our flow is not turbulent, even

though the carrier flows studied both in simulation
[8,13,14] and experiment [9–11,15] are typically turbulent.
In previous work, the particle size is typically assumed to
be smaller than the Kolmogorov length scale. In this limit,
the local flow around the particles is random but smooth,
just as it is for our flow. Our results should therefore have
relevance for turbulent particle-laden flows. Additionally,
inertial effects have previously been seen in simulation for
spatiotemporally chaotic flows like ours [16,17,25].
For particles with St> 0:1, previous studies have found

that the acceleration statistics of inertial particles differ
from those of fluid elements, for both heavy [8,9] and large
particles [7,10]. In each case, the acceleration variance
decreased as the Stokes number increased; for the heavy
particles, the acceleration probability density function
(PDF) also became narrower for higher St. In Fig. 2, we
show both the velocity and acceleration PDFs for our
particles. Surprisingly, we find no statistically significant,
systematic difference between the single-point velocity or
acceleration of the three different sizes for any Re tested.
We find similar results for the vorticity or strain rate seen
by the three sizes of particles. These results suggest that
particles with St�Oð10�2Þ are good flow tracers if only
the single-point flow statistics are desired.
Closer investigation of the particle dynamics, however,

reveals differences between the large particles and the

FIG. 1. Sample image from our experiment. The three sizes of
particles are easily distinguishable by our particle identification
algorithms. The contrast of this image has been enhanced to
show the tracer particles more clearly.

FIG. 2 (color online). Probability density functions (PDFs) of
(a) the particle velocity and (b) acceleration. The PDFs for
different Reynolds numbers have been offset for clarity: from
bottom to top, Re ¼ 72 (j), 108 (d), 155 (m), 185 (.), 208
(r), and 220 (w). The velocities and accelerations have been
normalized by the root-mean-square values measured from the
tracer particles. Solid lines show data for the d ¼ 80 �m tracers,
open symbols for the d ¼ 0:92 mm particles, and solid symbols
for the d ¼ 2:00 mm particles. There is no statistically signifi-
cant difference between the three particle sizes.
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tracers. Since we have access to the fluid velocity field u as
well as the velocities v of the large particles, we can
directly compare the two. Let us define the vector velocity
difference w ¼ v� u. In Fig. 3, we show the PDF of jwj
for all three sizes of particles. We note that w is not strictly
zero even for the tracer particles, due to smoothing of the
measured velocity field and errors introduced by numerical
interpolation when comparing the particle and fluid veloc-
ities [26]; the tracer PDFs therefore give the baseline
accuracy of our measurements. We find a systematic trend
for the inertial particles: larger particles are more likely to
differ in velocity from the underlying flow field, even
though St is small. We also show in Fig. 3 the PDFs of
the two ingredients of w: the difference in speed �v ¼
jvj � juj and the angle � between v and u. From Fig. 3(b),
we see that the large particles may move both faster and
slower than the underlying flow; indeed, the PDFs are
surprisingly skewed towards the fast side for the large
particles. Systematic growth of the speed difference �v
with increasing particle size is not clearly evident from our
data, particularly for the slow side of the PDF. On the other
hand, from Fig. 3(c), we see that larger particles are
systematically more likely to be moving in a direction
different from the fluid element at the same location.

In addition to these single-time statistics, our measure-
ments allow us to study the time dependence of inertial
effects. We directly measure the trajectories of the large
particles. Our velocity fields are resolved in time; we can
therefore create trajectories of virtual ideal fluid elements
by integrating the velocity fields in time [20,24,27,28]. By
choosing the initial positions of these virtual particles to
coincide with measured positions of the large particles, we
can compare the trajectories of inertial particles and fluid
elements directly. We show samples of these virtual tra-
jectories along with their parent physical trajectories in
Figs. 4(a) and 4(b). As shown in Fig. 4(a), the large
particles sometimes follow the fluid very well. As shown

in Fig. 4(b), however, the virtual trajectories sometimes
separate from their parent tracks wildly; empirically, we
observe such strong separations near hyperbolic points
[21]. To quantify this effect, we have measured the growth
of the mean-squared distance between the physical and
virtual trajectories, as shown in Fig. 4(c). For the tracer
particles, we see roughly exponential growth of the mean-
squared separation in time, as is expected for a chaotic
flow: the finite resolution with which we locate the physi-
cal particles leads to slightly different initial conditions for
the physical and virtual trajectories. The mean-squared
separation for the large particles, however, grows approxi-
mately as a t2 power law. We also find that the virtual
particles separate systematically faster from the larger of
the inertial particles: the scaling exponent is roughly the
same, but the coefficient is larger, as shown in Figs. 4(d)
and 4(e).
Our results clearly show that the large particles behave

inertially, even though St is small; the effects we see,
however, do not scale with St as it is defined in Eq. (1).
In Fig. 3, for example, the difference between the d ¼
0:92 mm and d ¼ 2:00 mm particles is clearly evident;
there are, however, no systematic differences between the
data for different Re, even though we expect that St� Re.
A similar trend is seen in Fig. 4(c): since St for the d ¼
0:92 mm particles at our highest Re is smaller than St for
the d ¼ 2:00 mm particles at our lowest Re, we would
expect that all the d ¼ 2:00 mm curves should lie above
the d ¼ 0:92 mm curves. By fitting the mean-squared
displacement curves to t2 power laws and extracting the
coefficientD, we show in Fig. 4(d) that this is not the case:
the data for the two sizes of particles as a function of St do
not lie on a single curve. Nevertheless, at each Re, the d ¼
2:00 mm particles have larger values of D than their d ¼
0:92 mm counterparts do, as shown in Fig. 4(e). Our data
therefore suggest that the Stokes number as defined in
Eq. (1) does not fully account for the effects of particle

FIG. 3 (color online). PDFs of (a) the magnitude of the vector velocity difference between the particle and the flow jwj, (b) the speed
difference �v, and (c) the angle between the particle velocity vector and the flow velocity vector �, with the � PDFs offset for clarity.
The symbols are the same as in Fig. 2. The tracer data (solid lines) show our baseline accuracy. For jwj and �, the d ¼ 2:00 mm
particles deviate from the flow systematically more than the d ¼ 0:92 mm particles. For �v, the trend is unclear.

PRL 101, 174504 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

24 OCTOBER 2008

174504-3



inertia. Our data are not simply a function of either St or Re
alone.

Taken together, our results suggest that Lagrangian
measurements following the trajectories of particles are
more sensitive to inertial effects: the single-point statistics
of the large particles shown in Fig. 2 are indistinguishable
from their tracer counterparts, but, as shown in Fig. 4, the
effects of even a small amount of particle inertia are very
clear over long times. From Fig. 3, it appears that the main
consequence of the inertia of large particles is to produce
misalignment of the particle and flow velocities. Finally,
we find that the inertial effects do not scale with the Stokes
number as usually defined. Our results indicate that work
remains to be done in understanding the dynamics of
inertial particles.
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FIG. 4 (color online). (a),(b) Sample physical and virtual tra-
jectories for the d ¼ 2:00 mm particles. Physical trajectories are
shown as thick lines (red online), and virtual trajectories as thin
lines (blue online). The large particles sometimes track the flow
nearly perfectly (a), and sometimes deviate wildly (b).
(c) Evolution of the mean-squared distance between a physical
particle and a virtual particle with identical initial conditions.
Symbols are the same as in Fig. 2, and solid lines represent the
tracers. (d),(e) Coefficients of t2 power-law fits to the mean-
squared distance (relative to the virtual particles) for the two
sizes of inertial particles. Squares show the d ¼ 0:92 mm par-
ticle data, and circles the d ¼ 2:00 mm particle data. No clear
trend is seen as a function of St (d), but the d ¼ 2:00 mm
particles separate faster than their d ¼ 0:92 mm counterparts
at each Re (e).
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