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In grand unified theories with large numbers of fields, renormalization effects significantly modify the

scale at which quantum gravity becomes strong. This in turn can modify the boundary conditions for

coupling constant unification, if higher dimensional operators induced by gravity are taken into

consideration. We show that the generic size of, and the uncertainty in, these effects from gravity can

be larger than the two-loop corrections typically considered in renormalization group analyses of

unification. In some cases, gravitational effects of modest size can render unification impossible.
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The possibility that all particles and interactions might
be described by a grand unified gauge theory at sufficiently
high energy scales has intrigued physicists for many years
[1]. There are hints that the renormalization group evolu-
tion of the coupling constants of the standard model of
particle physics, or possibly of its supersymmetric version,
causes them to unify at a large energy scale of order
1016 GeV [2]. However, this scale is uncomfortably close
to the Planck scale—the energy at which quantum gravi-
tational effects become strong. Such effects can alter the
boundary conditions on coupling constant unification at the
grand unified scale [3,4], and, since their precise size is
only determined by Planck scale physics, introduce uncer-
tainties in predictions of grand unification [5].

In this Letter, we identify an additional uncertainty,
arising from the renormalization of the quantum gravity
scale itself. We find that the Planck scale is reduced sig-
nificantly in models with large numbers of particles (e.g.,
of order 103 species, common in many grand unified
models, and often mostly invisible at low energies). This
in turn leads to additional uncertainties in the low-energy
coupling values associated with unification (see Fig. 1);
these uncertainties are generically as large as the two-loop
corrections to the renormalization group equations that
have become part of the standard analysis of grand uni-
fication. Our results suggest that low-energy results alone
cannot, with any high degree of confidence, either suggest
or rule out grand unification.

The strength of the gravitational interaction is modified,
i.e., renormalized, by matter field fluctuations [6–8]. One
finds that the effective Planck mass depends on the energy
scale � as

Mð�Þ2 ¼ Mð0Þ2 � �2

12�
ðN0 þ N1=2 � 4N1Þ; (1)

where N0, N1=2, and N1 are the numbers of real spin zero

scalars, Weyl spinors, and spin one gauge bosons coupled

to gravity. Mð0Þ ¼ MPl is the Planck mass at low ener-
gies—i.e., it is directly related to Newton’s constant G ¼
Mð0Þ�2 in natural units @ ¼ c ¼ 1. Related calculations
performed in string theory, which presumably take into
account quantum gravity effects, lead to the same behavior
for the running of the Planck mass [9].
If the strength of gravitational interactions is scale de-

pendent, the true scale�� at which quantum gravity effects
are large is one at which

Mð��Þ ���: (2)

This condition means that fluctuations in spacetime ge-
ometry at length scales ��1� will be unsuppressed. It has
been shown in [8] (see also [10]) that the presence of a
large number of fields can dramatically impact the value
��. For example, it takes 1032 scalar fields to render �� �
TeV, thereby removing the hierarchy between weak and
gravitational scales. In many grand unified models, which
we study here, the large number of fields can cause the true
scale �� of quantum gravity to be significantly lower than
the naive value MPl � 1019 GeV. In fact, from the above
equations,

�� ¼ MPl=�; (3)

where, for a theory with N � N0 þ N1=2 � 4N1,

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ N

12�

s

: (4)

We will exhibit examples of grand unified theories with
N �Oð103Þ so that the scale of quantum gravity is up to an
order of magnitude below the naive Planck scale. In such
models, corrections to the unification conditions from
quantum gravity are much larger than previously consid-
ered [3–5]. In this Letter, we show that the generic size of
these effects can be larger than the two-loop corrections
usually considered in RG analyses of unification, and that,
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in some cases, even modestly sized gravitational effects
can render unification impossible. Such large uncertainties
might impact whether one considers apparent unification
of couplings to be strong evidence for grand unification or
supersymmetry.

The breaking of a grand unified gauge group down to the
standard model group SUð3Þ � SUð2Þ � Uð1Þ via Higgs
mechanism typically involves several scalar multiplets,
which can be in large representations. Furthermore, the
total number of these scalar degrees of freedom in the form
of Higgs bosons is typically much larger than the number
of gauge bosons, soN ¼ N0 þ N1=2 � 4N1 can be large. In

this Letter, we mainly consider supersymmetric grand
unified theories since they naively lead to better unification
results compared to nonsupersymmetric models [2]. They
also satisfy experimental constraints from proton decay
and Yukawa unification more easily, see, e.g., [11]. In the
supersymmetric case, N ¼ 3NC � 3NV with NC and NV

the number of chiral and vector supermultiplets, respec-
tively, which shows that the renormalization effect is more
important in such models due to the larger particle content.

For example, SUSY-SU(5) with three families already
has N ¼ 165, i.e., � ¼ 2:3. In SUSY-SO(10) models,
which can better accommodate neutrino mass generation,
proton decay constraints, and fermion mass relations, the
numbers are larger: the minimal supersymmetric SO(10)

model [12,13] uses 126, 126, 210, and 10Higgs multiplets,
yielding N ¼ 1425 or � ¼ 6:2. Some models [14] use
even more multiplets, others [15] use fewer and smaller
ones, although the model with the smallest representations

10, 16, 16, and 45 [16]—yielding N ¼ 270 and � ¼ 2:9—
leads to R-parity violation and other problems. We thus
have �� 5 for most reasonable SUSY-SO(10) models.
Other unification groups considered in the literature in-
clude E8� E8, which is motivated by string theory and
requires both 248 and 3875 Higgs multiplets [17], clearly
yielding even bigger renormalization effects on MPl.

Quantum gravity effects have been shown to affect the
unification of gauge couplings (see [3–5,18–22] for a non-
exhaustive list of papers). The lowest order effective op-
erators induced by a quantum theory of gravity are of
dimension five, such as [3,4]

c

�̂�
TrðG��G

��HÞ; (5)

where G�� is the grand unified theory field strength and H

is a scalar multiplet. This operator is expected to be in-
duced by strong nonperturbative effects at the scale of
quantum gravity, so has coefficient c�Oð1Þ and is sup-

pressed by the reduced true Planck scale �̂� ¼ ��=
ffiffiffiffiffiffiffi
8�

p ¼
M̂Pl=� with M̂Pl ¼ 2:43� 1018 GeV. Note, there is some
ambiguity as to whether the Planck scale �� [3] or the
reduced Planck scale �̂�, which is the quantity that enters
quantum gravity computations [5], or if some other, pos-
sibly lower, compactification scale [4] suppresses the op-

erator (5). Regardless of that, our main point here is the
gravitational enhancement � of this operator due to renor-
malization of the quantum gravity scale, which has not
been taken into consideration previously.
To be as concrete and unambiguous as possible, we will

first examine these gravitational effects in the example of
SUSY-SU(5). Operators similar to (5) are present in all
grand unified theory models, and an equivalent analysis
applies. Later on, we will explicitly show how (5) arises in
specific SO(10) models with sizable �� 5, and that the
following analysis can be carried over verbatim.
In SU(5), the multiplet H in the adjoint representa-

tion acquires, upon symmetry breaking at the unifica-

tion scale MX, a vacuum expectation value hHi ¼
MXð2; 2; 2;�3;�3Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

50��G

p
, where �G is the value of

the SU(5) gauge coupling atMX. Inserted into the operator
(5), this modifies the gauge kinetic terms of SUð3Þ �
SUð2Þ � Uð1Þ below the scale MX to

� 1

4
ð1þ �1ÞF��F

��
Uð1Þ �

1

2
ð1þ �2ÞTrðF��F

��
SUð2ÞÞ

� 1

2
ð1þ �3ÞTrðF��F

��
SUð3ÞÞ (6)

with

�1 ¼ �2
3
¼ � �3

2
¼

ffiffiffi
2

p
5

ffiffiffiffi
�

p c�
ffiffiffiffiffiffiffi
�G

p MX

M̂Pl

: (7)

After a finite field redefinition Ai
� ! ð1þ �iÞ1=2Ai

�, the

kinetic terms have familiar form, and it is then the corre-

sponding redefined coupling constants gi!ð1þ�iÞ�1=2gi
that are observed at low energies and that obey the usual
RG equations below MX, whereas it is the original cou-
pling constants that need to meet at MX in order for
unification to happen. In terms of the observable rescaled
couplings, the unification condition therefore reads

�G ¼ ð1þ �1Þ�1ðMXÞ ¼ ð1þ �2Þ�2ðMXÞ
¼ ð1þ �3Þ�3ðMXÞ: (8)

Numerical unification results using this boundary con-
dition are shown in Fig. 1. Leaving the low-energy parame-
ters �3ðMZÞ (the strong coupling constant at the Z mass
MZ) andMSUSY open in some range in order to compare the
size of the corrections from the new boundary condition to
experimental uncertainties, we evolved the gauge cou-
plings under two-loop RG equations of the SM/MSSM
[23] with SUSY breaking scale MSUSY, taking as fixed
�1ðMZÞ ¼ 0:016887, �2ðMZÞ ¼ 0:03322 [24]. Then, test-
ing each pair [�3ðMZÞ, MSUSY] in the wide range of pa-
rameters of Fig. 1 for unification according to (8), it turns
out that for every pair, perfect unification happens for
exactly one value of the coefficient c of (5).
Our results show that, e.g., in a theory with �� 5,

unification depends quite sensitively on the size of the
gravitational operator: reasonable values of the coefficient
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c�Oð1Þ can give unification for quite a large range of
low-energy couplings �iðMZÞ and parameters MSUSY, so
unification does not seem to be a very special feature. On
the other hand, even a slight change to the value of c
requires quite large adjustments in initial conditions
�iðMZÞ for unification to still happen. This is very unsat-
isfying since the value of c is determined only by some
deeper theory of quantum gravity above the scaleMX; i.e.,
grand unification cannot be predicted or claimed based on
low-energy observations alone, and therefore loses most of
its beauty. More severely yet, the effects of the gravita-
tional operator can be so large that, if quantum gravity
determines the sign of this operator to be positive with c >
4=� (which is quite natural for theories with large particle
content), then unification cannot happen for any experi-
mentally allowed parameters of the SM/MSSM model, see
Fig. 1.

Furthermore, in light of our results, improving the pre-
cision of theoretical predictions and experimental values
seems unnecessary and meaningless: e.g., for the parame-
ter values �3ðMZÞ ¼ 0:108, MSUSY ¼ 103 GeV, MX ¼
1016 GeV, and �G ¼ 0:0389 favored by Amaldi et al. [2]
to yield good unification, Table I compares the shifts
�2
i ðMXÞ � �1

i ðMXÞ in theoretical predictions due to inclu-
sion of two-loop running to the splittings �G � �G=ð1þ
�iÞ required by the boundary condition (8). These splittings
are shown for �� 5 and c ¼ �1, but would be larger or
smaller proportional to c�. The table shows that the ge-
neric size of, and uncertainty in, the effects from gravity is

larger than the two-loop corrections. Thus, two-loop com-
putations do actually not improve evidence for unification.
Similarly, the uncertainty in the value of the coefficient c

is far greater than experimental uncertainties in measure-
ments of SM/MSSM parameters. For example, the parame-
ter range �3ðMZÞ ¼ 0:108� 0:005, MSUSY ¼ 103�1 GeV
quoted in [2] is covered by varying the coefficient c in the
small range �2=� < c < 2=�, see Fig. 1. In particular,
previous attempts to pin down �3ðMZÞ or sin2�W by de-
manding gauge coupling unification seem invalid without
further knowledge about c. Also, claiming that SUSY
unification is favored by, e.g., LEP data seems farfetched.
Without actually observing proton decay, it is hard to claim
convincing evidence for unification of the gauge interac-
tions of the standard model at some higher scale. Finally, as
can be seen from Fig. 1, the unification scale that would be
compatible with current experimental values of �3ðMZÞ is
of the order of MX � 1016 GeV, which, depending on the
specific model under consideration, might be uncomfort-
ably low with respect to proton decay. Phrased another
way, given the current measurements of �iðMZÞ, the op-
erator (5) cannot be used to shift the unification scaleMX to
values much above 1016 GeV (this possibility was dis-
cussed in past analyses [3]).
In the phenomenologically more successful SUSY-

SO(10) models introduced at the beginning of this Letter,
the symmetry breaking at the high scale is effected by

scalar multiplets in the �ij
A ð45Þ, �ijk

A ð120Þ, �ijkl
A ð210Þ,

�ijklm
A ð126Þ, or �ij

S ð54Þ representations. A group invariant

like operator (5) containing two gauge fields G�� ¼
ðGij

A Þ��ð45Þ in the adjoint representation can only be

formed by contracting with an even-index Higgs multiplet.
The contraction with the 45 multiplet vanishes identically
as the trace of a product of three antisymmetric matrices,

but the contractions GijGik�jk
S with a 54 and GijGkl�ijkl

A

with a 210 do not. (Note, we can neglect Higgs singlets � of

TABLE I. The upper half of the table shows shifts in the
predictions for the values of the coupling constants at MX ¼
1016 GeV due to inclusion of two-loop running. These shifts are
comparable in size or even smaller than the necessary splittings
between the �Gi due to (8) in the case � ¼ 5, c ¼ �1 (lower
half).

i 1 2 3

�1
i ðMXÞ 0.03815 0.03767 0.03814

�2
i ðMXÞ 0.03897 0.03899 0.03868

	�i ¼ �2
i � �1

i 8:2� 10�4 13:2� 10�4 5:4� 10�4

	�i=�
1
i þ2:1% þ3:5% þ1:4%

�iðc� ¼ �5Þ �0:0167 �0:0503 þ0:0335
�GðMXÞ 0.0389 0.0389 0.0389

�Gi ¼ �G=ð1þ �iÞ 0.0396 0.0410 0.0376

	i ¼ �G � �Gi �6:6� 10�4 �20:6� 10�4 12:6� 10�4

	i=�G �1:7% �5:3% þ3:2%FIG. 1. For � fixed by the particle content of the theory, solid
lines are contours of constant c such that, under the pres-
ence of the gravitationally induced and enhanced operator (5),
SUSY-SU(5) perfectly unifies at two loops for given values of
the initial strong coupling constant �3ðMZÞ and SUSY breaking
scaleMSUSY. Over the whole range, unification happens for some
value of the coefficient c, with unification scale and unified
coupling between MX ¼ 9:3� 1014 GeV, �G ¼ 0:033 (lower
right corner) and MX ¼ 5:5� 1016 GeV, �G ¼ 0:045 (upper
left).
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SO(10), since, apart from their inability to break gauge
symmetries, they would yield �1 ¼ �2 ¼ �3 and thus just
redefine the meaning of �G.)

If these effective operators (there might be several,
depending on the Higgs content of the model) are not
forbidden by other principles, they are likely created by
quantum gravity at scale �̂� and, after the multiplets
acquiring vacuum expectation values at the high scale
MX, yield corrections (6) to the SUð3Þ � SUð2Þ � Uð1Þ
gauge kinetic terms where �i � c���1=2

G MX=M̂Pl with

calculableOð1Þ coefficients as in (7). So, a related analysis
applies and similar gravitational effects are present.

In the case of single-step breaking at MX, when all the
SM gauge fields happen to lie in the natural SU(5) sub-
group of SO(10), or in the case of two-step breaking
SOð10Þ ! SUð5Þ ! SM with an intermediate scale, the
analogy to the above SU(5) analysis is even closer: in
these cases, the ratios among the �i are the same as in
(7), with an overall group-theoretic factor that can be
absorbed into �. Then the numerical results in Fig. 1 and
Table I hold unchanged and illustrate the arbitrariness
or impossibility of unification (or preunification) in such
SO(10) models.

Many predictions of grand unified theories are subject to
uncertainties due to quantum gravitational corrections. We
have shown that these uncertainties are significantly en-
hanced in models with large particle content (e.g., of
order 103 matter fields), including common variants of
SU(5), SO(10) and E8� E8 unification. Models with large
particle content may also exhibit a Landau pole at an
energy somewhat above the unification scale, which may
introduce other uncertainties (e.g., additional operators
from strong dynamics). These are independent of the ef-
fects we examined, which are due to quantum gravity.
If the number of particles is sufficiently large, the scale
of quantum gravity might coincide with (or be smaller
than) the scale of the Landau pole or the unification scale.
Since the quantum gravitational corrections and, poten-
tially, most of the large number of matter fields appear
only at very high energies, it seems that low-energy phys-
ics alone cannot, with a high degree of confidence, either
suggest or rule out grand unification. Model builders
should perhaps favor smaller matter sectors in order to
minimize these corrections and obtain calculable, predic-
tive results.
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