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Many models of baryogenesis rely on anomalous particle physics processes to give baryon number

violation. By numerically evolving the electroweak equations on a lattice, we show that baryogenesis in

these models creates helical cosmic magnetic fields, though the helicity created is smaller than earlier

analytical estimates. After a transitory period, electroweak dynamics is found to conserve the Chern-

Simons number and the total electromagnetic helicity. We argue that baryogenesis could lead to magnetic

fields of nano-Gauss strength today on astrophysical length scales. In addition to being astrophysically

relevant, such helical magnetic fields can provide an independent probe of baryogenesis and CP violation

in particle physics.
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Cosmic magnetic fields can arise from a number of early
Universe processes (e.g., [1–6]; for reviews see [7]). The
detection of such magnetic fields would be an important
step in our understanding of structure evolution, and the
magnetic field distribution could be used as a probe of
early Universe cosmology. Most magnetic field generation
mechanisms discussed so far produce nonhelical fields, and
thus it is of particular interest that processes like electro-
weak baryogenesis imply magnetic fields that are helical
[5,6]. If helical primordial magnetic fields are observed,
perhaps as discussed in [8], they would offer confirmation
of cosmological baryogenesis, and the magnetic field prop-
erties could be turned into a detailed probe of particle
physics and cosmology at the epoch of baryogenesis. In
particular, the CP violation that leads to a Universe filled
with matter and no antimatter would be probed by cosmo-
logical observations.

These considerations have prompted us to study the
production of magnetic fields during the decay of sphaler-
ons [9,10], a process that produces fermions [11] and is key
to electroweak baryogenesis. While electroweak baryogen-
esis is not successful in the minimal standard model, our
study also applies to any extension of the standard model in
which baryon number violation is mediated by sphaleron-
like processes involving changes in the winding (Chern-
Simons number) of vacuum non-Abelian gauge field
configurations.

To understand the connection between sphalerons and
helical magnetic fields, it is simpler to think of ‘‘deformed
sphalerons’’ where the gauge field configuration resembles
that of electroweak strings [12]. The sphaleron can then be
interpreted as linked loops of electroweak Z-string or a
confined electroweak monopole-antimonopole pair [13–
17]. The linked loops of Z magnetic flux can then decay
into linked electromagnetic flux as described in [6], and

thus the resulting electromagnetic field carries magnetic
helicity. If we think of the sphaleron in terms of the
confined magnetic monopole pair, the string that confines
them is twisted, and this also leads to magnetic helicity. In
[5,6], these considerations indicated a remarkably simple
relationship between the cosmic magnetic helicity density
and the cosmic baryon number density

h ¼ 1

V

Z
V
d3xA � r�A�� nb

�
(1)

where we consider some large spatial volume V, A is the
electromagnetic vector potential, nb is the average baryon
number density, and � ¼ 1=137 is the fine structure
constant.
Our goal is to examine the heuristic arguments in [5,6]

by explicitly studying the decay of an electroweak spha-
leron. (Recently, along similar lines, magnetic fields pro-
duced during preheating at the electroweak scale were
studied in Ref. [18].) We will indeed find that helical
magnetic fields are generated during sphaleron decay,
and the relation in Eq. (1) holds at the order of magnitude
level. Our numerical results also show, somewhat unex-
pectedly, that the Chern-Simons number and the electro-
magnetic helicity are conserved after a transitory initial
period (also see [19]). We also reconsider the net magnetic
field generated during baryogenesis and find that the field
strength is likely to be much larger than has been previ-
ously estimated.
We work with the bosonic sector of the electroweak

Lagrangian

L ¼ ðD��ÞyD��� 1

4
B��B

�� � 1

4
W�� �W��

� �ðj�j2 � v2Þ2 (2)

where
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The SUð2Þ generators, �a, are normalized by Trð�a�bÞ ¼
2�ab. The Uð1Þ (hypercharge) field strength is

B�� ¼ @�B� � @�B�; (4)

and the SUð2Þ field strength is defined as

Wa
�� ¼ @�W

a
� � @�W

a
� þ g�bcaWb

�W
c
�: (5)

To study the magnetic field produced by a decaying
sphaleron, we numerically set up a configuration like the
electroweak sphaleron solution [9,10,20], i.e., a perturbed
sphaleron, since the exact solution, even though it is un-
stable, will take a long time to decay numerically.

� ¼ vhð�ÞG�
ixþ y
�iz

� �
(6)

Wa
i �

a ¼ � 2fð�Þ
gr2

�icbxbG��
cGy

� (7)

Bi ¼ g0v2pð�Þð�y; x; 0Þ (8)

where

G�ð ~xÞ ¼ exp½i�ðrÞ� � x̂=2�

is an SUð2Þ gauge transformation, with �ðrÞ ¼
	½1� expð�rÞ�, ensuring that the gauge fields fall off
fast enough away from the origin. The functions fð�Þ,
hð�Þ, and pð�Þ are profile functions and are taken to depend
on the radial coordinate � ¼ gvr=

ffiffiffi
2

p
alone.

In the true solution, the profile functions also depend on
the angular coordinates and have to be determined numeri-
cally [20]. Since we want to start with a perturbed spha-
leron, we do not need the precise forms of f and h, but we
do need to meet the asymptotic properties satisfied by f
and h: f, h ! 0 as r ! 0, and f, h ! 1 as r ! 1.
Following Klinkhamer and Manton [10], we choose for
the profile functions their ansatz, labeled a, with the length
scales given by � ¼ 3:79 and � ¼ 1:90. We take for the
initialUð1Þ gauge field, Eq. (8), the small g0 approximation
[10]. The profile function p can be found, in terms of f and
h, by solving the Uð1Þ equation of motion in the SUð2Þ
background.

The decay is studied by evolving the SUð2Þ �Uð1Þ
electroweak field equations using the standard Wilsonian
approach for lattice gauge fields [21–25]. The temporal
gauge, Wa

0 ¼ B0 ¼ 0, allows a simple identification of the

canonical momentum, and we use it throughout in this
Letter. We adopt Graham’s implementation of the lattice
equations [25]


ðtþÞ ¼ 2
ðtÞ �
ðt�Þ þ ð�tÞ2
�
2�ðv2 � j
pj2Þ
p

þ X
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p�i

�x2

�
(9)

where the gauge fields are on the links and are defined in
terms of the Up

j matrices by

Up
j ¼ eig

0Bp
j �x=2eigW

p
j ���x=2: (10)

Here, p labels the point in the lattice and j the link
emanating from point p. The U matrix along a timelike
link, j ¼ t, is equal to the identity matrix in the temporal
gauge. For the link from site p in the negative j direction,
we take

Up
�j ¼ ðUp�j

j Þy ¼ e�ig0Bp�j
j �x=2e�igWp�j

j ���x=2: (11)

The evolution of the gauge fields is given by

Up
j ðtþÞ ¼ exp

�
logUp

j ðtÞUpy
j ðt�Þ � �t2

�x2

X
j0�j
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Here, we define Up
hjj0 � Up

j U
pþj
j0 Upþjþj0

�j Upþj0
�j0 for the

plaquette and Jpj � �g0Imð
pyUp
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pþjÞ=�x and Jp
j �

�g0Imð
py�Up
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pþjÞ=�x for the gauge currents. For fur-
ther details, the reader is referred to [25]. In addition to
these evolution equations, we have implemented absorbing
boundary conditions as described in [26] but extended to
non-Abelian fields.
The evolution of the Chern-Simons number is of par-

ticular interest to us since it is correlated with changes in
the baryon number. It is given by

NCSðtÞ ¼ NF

32	2
�ijk
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�
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��
(13)

where NF ¼ 3 is the number of families and there is no
surface term because our fields vanish at infinity.
In the electroweak model, the electromagnetic gauge

field A� is defined in terms of the electroweak W� and

B� gauge fields

A� ¼ sin�wn
aWa

� þ cos�wB� (14)

with na ¼ ��y�a�=�y�. However, there is a choice of
definitions for the electromagnetic field strength. For ex-
ample,

A�� ¼ sin�wn
aWa

�� þ cos�wB�� (15)

is the natural definition to calculate the energy density in
the massless electromagnetic field. Yet, this definition is
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not simply the curl of the gauge field in Eq. (14) because
derivatives of A� also involve derivatives of na. Even at

late times, when D�� becomes small, such derivatives

will in general contribute. The only clean resolution of
this issue that we have found is to define the electromag-
netic gauge field in unitary gauge and then define the
electromagnetic field strength as the curl of the gauge
potential as in the usual Maxwell theory. At early times,
whenD�� is significant,r�A does not coincide with Aij

in Eq. (15), but they do coincide at late times. Then, the
helicity tells us something about the topology of the very
same magnetic field lines that carry energy density.

To go into unitary gauge, we calculate A� at every time

step only after applying the SUð2Þ gauge rotation

g2 ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
�y�

p �2 ��1

��
1 ��

2

� �
(16)

where �1 and �2 are the upper and lower components of

�. It is easily verified that g2� ¼
ffiffiffiffiffiffiffiffiffiffiffi
�y�

p
ð0; 1ÞT , detg2 ¼

1, and gy2 ¼ g�1
2 . After the rotation, na ¼ ð0; 0; 1Þ, and

when the rotation is applied to Wa
� the inhomogeneous

part of the gauge transformation contributes in a nontrivial
way to A�. At late times, we then find that �ijkAjk=2

coincides with ðr�AÞi, and we can unambiguously
keep track of the total electromagnetic helicity defined as
H ðtÞ ¼ VhðtÞ [see Eq. (1)].

In Fig. 1, we show the time evolution of the Chern-
Simons number (bottom panel) and the total electromag-
netic helicity (top panel). The plots are shown for three
different choices of initial conditions; the results for other
choices that we have run are qualitatively similar. We see
changes in the Chern-Simons number as well as growth in
the magnitude of the electromagnetic helicity, and then a
period of conservation (time step 50 to 250). The same
behavior is observed even when departing from the par-
ticular sphaleron configuration Eqs. (6)–(8), as can be seen
in Fig. 1. The curves that are nearly coincident in Fig. 1

correspond to the choice (� ¼ 3:79, � ¼ 1:9), and (� ¼
3:34, � ¼ 4:83) in the profile functions. The third curve
depicts a deformed (‘‘anisotropic’’) configuration obtained
by rescaling the x and y coordinates by 0.75 but leaving the
z unscaled. The configuration starts with a larger Chern-
Simons number and decays in the opposite direction, in-
creasing its value, resulting in a similar variation of the
helicity.
While electromagnetic helicity is known to be conserved

in a conducting plasma, its conservation in the present
situation is novel because we are solving vacuum equations
and the only charges in the system are due to theW� fields.
The value of electromagnetic helicity ( 	 2:5) is much

less than the value estimated ( 	 200) in Refs. [5,6]. The
estimate in [6] assumed a certain decay channel for linked
loops of Z-string and it is likely that the electromagnetic
helicity is a function of the precise instability through
which the sphaleron decays. A more rigorous estimate of
the final helicity needs to be done statistically, taking into
account the conditions at the epoch of baryogenesis.
Once electromagnetic field helicity is produced, it will

evolve, and eventually get frozen-in in the highly conduct-
ing ambient plasma. This is the scenario envisaged in
Ref. [6] and, under certain assumptions about the inverse
cascade, leads to the estimate that the cosmic magnetic
field is �10�13 G at recombination and coherent on a
comoving scale of �0:1 pc. We now argue that this is
really an underestimate of the magnetic field strength,
and typically we can expect a much higher field strength.
The essential point is that every baryon number violating

reaction goes via the sphaleron and produces magnetic
fields, whereas the estimate in [6] only accounts for the
magnetic field produced due to the excess of baryons over
antibaryons that we see today. To make this clearer, sup-
pose that sphalerons decay in some volume to produce Nb

baryons while others decay to produce �Nb ¼ Nb � � anti-
baryons, where � is entirely due to fundamental CP viola-
tion. Magnetic fields will be produced in each one of these
Nb þ �Nb ¼ 2Nb � � sphaleron decays. The baryon ex-
cess, however, is due to CP violation and is given by Nb �
�Nb ¼ � sphaleron decays. The magnetic field produced by
just these excess number of reactions is much smaller.
However, just as the baryons and antibaryons can annihi-
late, it is likely that some of the magnetic fields produced
due to baryon and antibaryon production will also annihi-
late. It is hard to estimate exactly how much magnetic field
survives, but the estimate in [6] is theminimum value of the
magnetic field. This value is protected by helicity
conservation.
We will now obtain another estimate with less restric-

tive, and more realistic, assumptions about the evolution of
the magnetic fields. Let us suppose that the magnetic fields
due to baryon and antibaryon production do not completely
annihilate, leading to a magnetic field enhancement by a
factor r. Then,

B� 10�13rG: (17)
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FIG. 1. Time evolution of the Chern-Simons number (bottom
panel) and electromagnetic helicity (upper panel) for three
different initial conditions as described in the text.
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Successful big bang nucleosynthesis (BBN) constrains the
energy density in the magnetic field so that BðtrecÞ< 1 G.
We choose the BBN bound as opposed to other bounds
since BBN places strong constraints on magnetic fields
with small coherence scale, e.g., see [27]. (Other con-
straints due to gravitational wave production may apply
to the nonhelical component of the magnetic field [28].)
This implies the constraint r < 1013.

To connect with particle physics, we realize that r
depends on the total number of sphaleron processes, which
are Nb þ �Nb in number. The estimate in [6] of 10�13 G at
recombination assumes that the magnetic field is propor-
tional only to the net baryon numberNb � �Nb. So there are
� � ðNb þ �NbÞ=ðNb � �NbÞ sphaleron events, where we
had earlier only accounted for 1. The energy density in
the magnetic field is enhanced by a factor� if the magnetic
fields produced by individual sphaleron decays are inde-
pendent. Since the magnetic energy density is proportional

toB2, the magnetic field strength is larger by the factor r ¼ffiffiffiffi
�

p � ��1=2. The value of � is derived from the strength of
CP violation in particle processes responsible for baryo-
genesis. For example, in the case of the electroweak model
[29], �� 1020 which leads to a magnetic field strength of
10�9 G today.

The coherence scale of the magnetic field produced
during baryogenesis can grow due to inverse cascade since
the magnetic field is helical (e.g., [30]). Taking the inverse
cascade into account and assuming that sphaleron events
are distributed uniformly in space, the comoving coherence
scale was estimated to be �0:1 pc [6]. However, if the
electroweak phase transition is strongly first order, spha-
leron events are not distributed uniformly, but can only
take place in the exterior of bubbles. The resulting mag-
netic field can be expected to be coherent over the typical
size of the bubbles at percolation. Since the typical bubble
size can be on cosmological scales, the initial coherence
scale can be �tew. Subsequent evolution stretches the
coherence scale due to Hubble expansion, / aðtÞ, and the

inverse cascade / aðtÞ2=3 [31]. The coherence scale today
can then be as large as Mpc scales. The precise spectrum
and coherence of magnetic fields expected from the elec-
troweak phase transition is an unsolved problem and needs
further investigation.

The argument above is intended to show that it may be
possible to derive important model-independent con-
straints on particle physics from limits on cosmic magnetic
fields. Further, if cosmic magnetic fields are observed, they
can be used to derive detailed information about processes
at baryogenesis and hence about high energy particle phys-
ics and CP violation.
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