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We study the typical (median) value of the minimum gap in the quantum version of the exact cover

problem using quantum Monte Carlo simulations, in order to understand the complexity of the quantum

adiabatic algorithm for much larger sizes than before. For a range of sizes N � 128, where the classical

Davis-Putnam algorithm shows exponential median complexity, the quantum adiabatic algorithm shows

polynomial median complexity. The bottleneck of the algorithm is an isolated avoided-crossing point of a

Landau-Zener type (collision between the two lowest energy levels only).

DOI: 10.1103/PhysRevLett.101.170503 PACS numbers: 03.67.Ac, 03.67.Lx, 75.10.Nr, 89.70.Eg

There is considerable interest in finding optimization
problems which could be solved much more efficiently
by an eventual quantum computer than by a classical
computer. An important class of classically intractable
problems is the NP-hard category [1]. Many optimization
problems of current interest have parameters which are
random, and so each problem corresponds to a large num-
ber (possibly infinite) of ‘‘instances.’’ The term NP-hard
actually refers to the behavior of the computationally
hardest instance, but, from a practical point of view, it is
also of great interest to know how the time to solve a
typical instance [2,3], the typical complexity, scales with
problem size. Numerical studies of NP-hard problems
show that this scaling is exponential in a broad class of
problem parameters [2,3]. It would be a very important
breakthrough to show that a quantum computer can solve
the same class of problem instances of an NP-hard problem
in less than exponential time.

In this Letter, we study the typical complexity as a
function of system size for a particular quantum algorithm,
the quantum adiabatic algorithm (QAA) proposed by Farhi
et al. [4]. The idea is that one adds to a ‘‘problem’’
HamiltonianH P, whose ground state represents a solution
of a classical optimization problem, a noncommuting
‘‘driver’’ Hamiltonian H D, so the total Hamiltonian is

H ð�Þ ¼ ð1� �ÞH D þ �H P; (1)

where � � �ðtÞ is a time-dependent control parameter. For
H P we are interested in binary optimization problems
expressed in terms of classical Ising spins taking values
�1 or, equivalently, in terms of the z components of the
Pauli matrices for each spin �̂z

i . The driver Hamiltonian is
then simply H D ¼ �P

N
i¼1 �̂

x
i , where �̂x

i is the

x-component Pauli matrix.
The control parameter �ðtÞ is 0 at t ¼ 0, so H ¼ H D,

which has a trivial ground state in which all 2N basis states
(in the �̂z basis) have equal amplitude. It then increases
with t, reaching 1 at t ¼ T (T is the run time or complex-

ity of the algorithm), at which pointH ¼ H P. If the time
evolution of �ðtÞ is sufficiently slow, the process will be
adiabatic. Hence, starting the system in the ground state of
H D (all spins aligned along x), the system will end up in
the classical ground state, which is what we want, with
only a small probability of failure. An upper bound for the
complexity of the QAA can be given [5,6], in terms of the
eigenstates and eigenvalues of the Hamiltonian H�n ¼
En�m, by

T � @jmax
�

V10ð�Þj=ð�EminÞ2; (2)

where �Emin corresponds to the minimum of the first
excitation gap �Emin ¼ min��Eð�Þ, with �E ¼
E1 � E0, and Vn0ð�Þ ¼ h�0jdH =d�j�ni. Typically, ma-
trix elements ofH scale as a low polynomial of a number
of spins N and the question of whether the complexity T
depends polynomially or exponentially with N depends on
how the minimum gap �Emin scales with N. The size
dependence of the minimum gap will therefore be the
central focus of this Letter.
It is difficult to study the typical complexity of the QAA

analytically since ��, the value of � at the minimum of the
gap �Eð�Þ, is different for each instance with fluctuations

being OðN�1=2Þ, so the ensemble averaging over random
instances can be performed only after �� has been found
for each case. In the original work of Farhi et al. [4], the
complexity of the adiabatic algorithm was studied numeri-
cally by direct integration in time of the system with
Hamiltonian H . Since the size of the Hilbert space in-
creases exponentially (it is of order 2N), they were limited
to very small sizes N & 20. Subsequently, Hogg [7] con-
sidered sizes up to N ¼ 24. These early papers [4,7] found
that the complexity of the algorithm scales as a roughly as
N2. However, this power law complexity may be an artifact
of the very small sizes studied, so it is of great interest to
determine whether the complexity continues to be poly-
nomial for much larger sizes or whether a ‘‘crossover’’ to
exponential complexity is seen. To investigate this ques-
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tion, it is not possible to include all terms in the Hilbert
space (as was done in the early work) since this becomes
much too large. Here we use quantumMonte Carlo (QMC)
simulations, with which we can study much larger sizes
because only a sampling of the states is performed.

There have also been QMC simulations (see, e.g.,
Ref. [8] for a discussion) in which t in Eq. (1) is the number
of Monte Carlo sweeps, and one estimates how the final
excess energy (i.e., the energy above the ground state)
varies with the total number of sweeps T . However, this
is a ‘‘fake’’ dynamics, which is not necessarily representa-
tive [8] of the real time unitary evolution guided by the
Schrödinger equation. Therefore the computational com-
plexity of such a procedure does not necessarily corre-
spond to that of the quantum adiabatic algorithm [4].

To make a comparison with the earlier work, we study
(essentially) the same model of H P used by Farhi et al.
[4]. It corresponds to an exact cover problem, which is a
particular version of a constraint satisfaction, a commonly
studied problem in the NP-hard category. In exact cover
there are N Ising spins and M ‘‘clauses,’’ each of which
involves three spins (chosen at random). The energy of a
clause is zero if one spin is �1 and the other two are 1;
otherwise, the energy is 1. Thus H P equals

H P ¼ 1

8

XM
�¼1

ð5� �̂z
�1

� �̂z
�2

� �̂z
�3

þ �̂z
�1
�̂z

�2

þ �̂z
�2
�̂z

�3
þ �̂z

�3
�̂z

�1
þ 3�̂z

�1
�̂z

�2
�̂z

�3
Þ; (3)

where�1,�2, and�3 are the three spins in clause� and the
f�̂z

i gi¼N
i¼0 are Pauli matrices. In the absence of the driver

Hamiltonian, the Pauli matrices can be replaced by classi-
cal Ising spins taking values �1. An instance has a ‘‘sat-
isfying assignment’’ if there is at least one choice for the
spins where the total energy is zero. As the ratio M=N is
increased, there is a phase transition where the number of
satisfying assignments goes to zero. The version used by
Farhi et al. considers only instances with a unique satisfy-
ing assignment (USA); i.e., there is only one state with
energy 0. This has the advantage that the gap �Eð�Þ is
greater than zero in both limiting cases H ¼ H D and
H ¼ H P but will have a minimum at an intermediate
value � ¼ ��; see Fig. 1. The aim is to determine the size
N dependence of the typical value of �Emin, averaged over
many instances.

We generate instances with a USA as follows. For each
size N, we take M clauses and prune off (i) isolated sites
and (ii) clauses (think of them as triangles) which are only
connected to other clauses at one corner, since these give a
trivial degeneracy without changing the complexity. This
leaves N0 sites and M0 clauses. Using the standard Davis-
Putnam-Logemann-Loveland (DPLL) [9] algorithm, we
then see if the remaining N0 sites with M0 clauses have a
USA. For each N, we choose M to maximize the proba-
bility of finding a USA. Although the probability of finding

a USA decreases exponentially with N, we have easily
been able to find instances for N up to 256, and the values
of M are shown in Table I. For the sizes which we will
study by QMC simulations (N � 128), the DPLL algo-
rithm clearly shows exponential complexity; see Fig. 2.
For each instance, we use QMC calculations to simulate

the quantum system in Eqs. (1) and (3) with N0 spins and
M0 clauses. We simulate an effective classical model with
Ising spins �z

i ð�Þ ¼ �1 in which � (0 � � < � � T�1) is
imaginary time. In practice, imaginary time is discretized
into L� ‘‘time slices’’ each representing �� ¼ �=L� of
imaginary time. For a different model, the 1D Ising chain
in a transverse field, we have verified numerically [11] that
the scaling behavior of the energy gap [12] is the same for
�� ! 0 as for finite ��, and hence it is plausible that a
discrete �� will work here, too.
We calculate the time-dependent correlation function

Cð�Þ ¼ 1

N0L�

XN0

i¼1

XL�

�0¼1

h�z
i ð�0 þ �Þ�z

i ð�0Þi; (4)

FIG. 1 (color online). QMC results for the gap between the
ground state and the first excited state as a function of the control
parameter � for one instance with N ¼ 64. The region around
the minimum value of the gap �Emin, which occurs at � ¼ ��, is
blown up in the inset.

TABLE I. For sizes N up to 256, we show values of the
number of clauses M for which the probability of a USA,
constructed as described in the text, is maximized. The ratio
M=N is denoted by � and is expected to approach the value at
the quantum phase transition �c ’ 0:625 [10] for N ! 1. For
the QMC simulations, we used only the sizes up to N ¼ 128.

N 16 32 64 128 192 256

M 12 23 44 86 126 166

� 0.7500 0.7188 0.6875 0.6719 0.6563 0.6484
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with �� ¼ 1 and L� large enough that ��E � 1, so the
system is in the ground state. For � � �, the correlation
function Cð�Þ will be a sum of exponentials

Cð�Þ ¼ qþ X
n�1

An exp½�ðEn � E0Þ�	; (5)

where the An are constants and q, the long time limit of the
correlation function, is determined from

q ¼ 1

N0
XN0

i¼1

�
1

L�

XL�

�0¼1

h�z
i ð�0Þi

�
2
: (6)

At large �, the sum in Eq. (5) is dominated by the term
corresponding to the first excited state (n ¼ 1), and so �E
can be obtained by fitting log½Cð�Þ � q	 against � for large
�. Figure 3 shows such a fit for an instance with N ¼ 128
near the minimum gap.

We determine �Emin, the minimum value of the gap (to
the first excited state), as � is varied. Figure 1 shows QMC
results for the gap between the ground state and the first
excited state as a function of the control parameter � for
one instance with N ¼ 64. The inset shows more clearly
the region of the minimum gap. The gap is greater than
zero for both � ¼ 0 and 1 (a property of this model) and is
much smaller at an intermediate value �� in the vicinity of
the quantum phase transition. Each instance has to be
carefully monitored to find the minimum gap, since �� is
different for each instance.

For the largest size studied, N ¼ 128, we found that for
some instances it was difficult to determine q accurately

for a range of �, because the simulation was not fully
equilibrated; the required number of sweeps increases
rapidly with N. As a result, plots of Cð�Þ � q (see Fig. 3)
were strongly curved. In a few cases, the error in the
computed value of q was small, and the problem could
be cured by allowing q to vary slightly away from the
computed value when doing the fits. However, we did
not trust this procedure if the correction to q was large.
For the remaining 13 out of 50 instances, we were able to
provide an upper bound for the minimum gap (from the
range of � where q was successfully computed), and this
turned out to be less than our eventual estimate for the
median gap. Hence, we were able to obtain reliable data for
sizes up toN ¼ 128. However, at present we are not able to
study much larger sizes because of the difficulty in deter-
mining q.
Since we are interested in the typical minimum gap

(among different instances) rather than the average (or
smallest), we show in Fig. 4 the median of the minimum
gap for N � 128. The main figure is a log-log plot, and the
dashed line corresponds to the median �Emin varying as
N�0:73. The pronounced curvature in the inset (log-linear
plot) shows that the behavior is not exponential. The
minimum gap therefore follows a power law for this range
of sizes, implying polynomial complexity. This result is
consistent with that found by Farhi et al. [4] and Hogg [7]
for much smaller sizes (N & 20–24). Bañuls et al. [13]
studied the QAA using matrix product states for sizes up to
N ¼ 60, but their result that the complexity becomes in-
dependent of size for N * 40 is surprising and quite differ-
ent from ours.
In addition to the energy gap �Eð�Þ, we also investi-

gated �d2E0=d�
2 ¼ 2

P
2N

m¼1 jV0mj2=ðEm � E0Þ since this

FIG. 3 (color online). A log-linear plot of the time-dependent
correlation function for an instance with N ¼ 128 near the
minimum gap. The energy gap is the negative of the slope at
large values of �. The number of time slices was L� ¼ 300. The
error bars were estimated by repeating the runs many (typically
100) times.

FIG. 2 (color online). A log-linear plot of the median complex-
ity of the exact cover problem using the (classical) DPLL
algorithm as a function of N. The straight line fit works well
demonstrating that the complexity increases exponentially with
N even for quite modest sizes. This figure is for samples with a
USA, but the data for all samples (with the same number of
clauses M) are very similar. The inset plots the same data on a
log-log scale. The pronounced curvature shows that the data
cannot be fitted to a power law.
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gives additional information about matrix elements near
the avoided-crossing point ��. We determined this from

�¼ R�
0 h½H Pð�ÞH Pð0Þ � hH Pi2	id�¼�ð1��Þ2d2E0=

d�2, finding that V0m depends on N very weakly near � ’
��. We also found that the location of the maximum of
�d2E0=d�

2 coincides to a good precision with ��; see
Fig. 5. Hence the sum in the expression for d2E0=d�

2 is
dominated by its first term (m ¼ 1) in the vicinity of the
avoided crossing at ��, which is of the Landau-Zener

type (collision of E1 and E0 levels only). This suggests
that T ¼ @jV10ð��Þj=½"ð�EminÞ2	 is an accurate estimate
for the algorithm complexity, where " � 1 is an
N-independent constant. As a result, T 
 N2�, where
� ¼ 0:73� 0:06.
In conclusion, by using QMC simulations we have con-

siderably extended the range of sizes over which the com-
plexity of the QAA can be investigated. For sizes up to
N ¼ 128, where the benchmark classical algorithm for
satisfiability problems (DPLL) shows exponential com-
plexity, the QAA shows polynomial behavior of the me-
dian minimum gap and hence presumably polynomial
behavior of the median complexity (contrast Fig. 4 with
Fig. 2). However, our results for the median do not rule out
the possibility that some instances have exponential com-
plexity. We also found a Landau-Zener (pairwise) charac-
ter of the avoided crossing at the minimum gap point.
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FIG. 5 (color online). The gap �Eð�Þ (blue) and �d2E0=d�
2

(red) against � for an instance with N ¼ 128. Solid lines are
cubic interpolations. The location of the minimum gap �� ¼
0:6306 is, within a margin of error, equal to the maximum of
�d2E0=d�

2 at � ¼ 0:6311 (both shown by vertical dashed
lines).

FIG. 4 (color online). A log-log plot of the median of the
minimum gap as a function of the number of bits N up to N ¼
128. From the satisfactory straight line fit, it is seen that the
median �Emin decreases as a power law N��, with � ¼ 0:73�
0:06. The number of instances is 50 except for N ¼ 64 for which
it is 45. The inset shows a log-linear plot. The pronounced
curvature shows that the behavior is not exponential for this
range of sizes, in contrast to the classical DPLL algorithm, data
for which are shown in Fig. 2.
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