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We provide a relation which describes how the entanglement of two d-level systems evolves as either

system undergoes an arbitrary physical process. The dynamics of the entanglement turns out to be of a

simple form and is fully captured by a single quantity.
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When precisely studying and manipulating the quantum
world, the objects of interest such as photons [1], atoms
[2], ions [3], or quantum dots [4] are usually only few in
number. But quantum mechanics does allow also meso- or
macroscopic systems to exhibit genuine quantum features
such as interference [5] and classically unachievable cor-
relations [6]—the latter often lumped together under the
label ‘‘entanglement.’’ The description of these larger
quantum systems, such as Bose-Einstein condensates,
which consist of thousands of quantum objects, requires
to resort to effective properties since the quantum system’s
exact state surpasses what can analytically or numerically
be coped with. Therefore, we need efficient theoretical and
experimental tools to characterize and probe these quan-
tum properties in terms of few and robust quantities [7–9].

Furthermore, since the transition from microscopic to
macroscopic scales entails a rapidly increasing density of
states, and, thus, a strongly enhanced fragility of generic
quantum features to perturbations, we have to account for
decoherence, or rather for the time scales on which quan-
tum properties can prevail, in the presence thereof. Thus,
we seek an efficient dynamical description of the entangle-
ment of open quantum systems [10–12].

However, while systematic progress has been achieved
in describing the interference of ever larger quantum ob-
jects [5], in ever more complex environments, our system-
atic understanding of entanglement dynamics is still in its
infancy. This lack of understanding is rooted in entangle-
ment being a nonlinear function of the system’s density
matrix. Thus, coherence is a necessary though by no
means sufficient criterium for entanglement to prevail.
Consequently, the only systematic results on entanglement
dynamics were hitherto available for the smallest—micro-
scopic—quantum systems which can harbor entanglement,
i.e., for pairs of qubits [13]. Here, we present a first general
result which describes the entanglement dynamics of two-
party quantum systems with arbitrary (finite) dimensions
of their components.

The setup we consider consists of two initially entangled
d-level systems, of which one undergoes an arbitrary
physical process, in general some open system dynamics
in which it interacts with uncontrolled and not measurable
degrees of freedom of its environment. Such processes are
often referred to as channels, maps, or superoperators

[14–16]. We denote them by $. Starting with a pure state
j�i, the system’s final state then takes the form

�0 ¼ ð1 � $Þj�ih�j; (1)

which now needs to be characterized in terms of its entan-
glement content. As compared to the simple case d ¼ 2 in
[13], the following complication arises: �0 may be a mix-
ture of pure states jc ii which are living on different, strict
subspaces of the d-dimensional space, i.e., the Schmidt
rank of �0 may drop below d, but this no longer implies
separability. We will here focus on the entanglement evo-
lution on time scales while �0 preserves its initial Schmidt
rank, though will see that the inferred dynamics has some
bearing also for the entanglement evolution on longer time
scales.
We quantify the entanglement exhibited by �0 using

G-concurrence [17], which reduces to concurrence [18]
when restricting to two two-level systems. For a pure state
j�i, it is the geometric mean of its d Schmidt coefficients
�i (i ¼ 1; . . . ; d). However, when j�i is given as j�i ¼P

d
i;j¼1 Aijjiijji with basis states jii and jji for the respec-

tive subsystems,G-concurrence is more conveniently eval-
uated by

Gdðj�iÞ ¼ d½detðAyAÞ�1=d: (2)

For mixed states �, G-concurrence is calculated through
the usual minimization procedure of the ensemble’s aver-
age, Gdð�Þ ¼ inf

P
ipiGdðj�iiÞ, over all possible decom-

positions into pure states, i.e., � ¼ P
ipij�iih�ij (with

pi > 0 and
P

ipi ¼ 1). An attempt for an analytical result
of this optimization procedure similar to the one done by
Wootters for concurrence [18] yielded computable upper
and lower bounds [19]. The same framework also allows to
consider (d� f)-systems, d � f, since pure states (and the
pure state vectors that form a decomposition of a mixed
state) of such a system can exhibit entanglement in at most
d levels, by virtue of their Schmidt-representation.
Exploiting some specific algebraic properties of

G-concurrence, we can largely follow the line of argument
when describing entanglement dynamics of 2� 2 states
[13]. In order to evaluate the entanglement of the final state
�0, we first need to express the initial pure state j�i as the
result of a so-called filtering operation M� [20] acting on
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either party of a maximally entangled state j�i, i.e.,
j�i ¼ ðM� � 1Þj�i: (3)

M� ¼ ffiffiffi
d

p P
d
i;j¼1 Aijjiihjj here acts on the first subsystem

of j�i ¼ Pd
n¼1 jnijni=

ffiffiffi
d

p
. Note that such filtering is al-

ways possible, for arbitrary j�i, given its matrix represen-
tation Aij. The channel represented by the filtering

operation M� and the state j�i are isomorphic [21].

Given the filtering M� and the channel $, which act on

different and possibly spatially separated parts of the sys-
tem, the temporal order of their execution must not be of
influence to the final state, and we can exchange their order
in our representation of �0,

�0 ¼ ðM� � 1Þ�$ðMy
� � 1Þ; (4)

where we introduced the result of the channel $ acting on
the maximally entangled state, �$ ¼ ð1 � $Þj�ih�j, which
is mixed in general. Again, state �$ and channel $ are
related to each other via the Jamiołkowski isomorphism
[21]. Summarizing these two steps above, we have trans-
formed the initial setup via the Jamiołkowski isomorphism
into the dual one, where the role of states (�$ replaces j�i)
and channels (M� replaces $) is interchanged. As in [13],

one may also arrive at this point by inserting an intermedi-
ate teleportation procedure before the d-level system
undergoes the action of the channel.

Having arrived at this particular form (4) of the final
state �0, our chosen entanglement measure, G-concurrence
for a (d� d)-system, factorizes much as concurrence does
for the (2� 2)-case [13]. That is, G-concurrence exhibits
the particular property that a single operator acting on
either one of the subsystems simply factors out [17,22]:

Gd½ðM � 1Þjc i� ¼ j detðMÞj2=dGdðjc iÞ. Applying this to
the dual form of the final state (4) (in this very form [23]),
and realizing that the determinant of M� relates to the

G-concurrence of the initial state j�i, yields our core result
Gd½ð1 � $Þj�ih�j� ¼ Gdðj�iÞGd½ð1 � $Þj�ih�j�: (5)

The entanglement of two d-level systems in terms of
G-concurrence evolves equally for all pure states j�i, is
solely given by the evolution of a maximally entangled
state, and merely rescaled by the initial entanglement. This
effectively reduces the vast space of initial conditions to a
single one.

For general, i.e., mixed, initial states �0 and/or two one-
sided channels $1 � $2, the convexity property of entangle-
ment monotones [17,24,25] leads to an inequality instead,
which provides an upper bound

Gd½ð$1 � $2Þ�0� � Gdð�0Þ �Gd½ð$1 � 1Þj�ih�j�
�Gd½ð1 � $2Þj�ih�j�: (6)

Here, equality holds, for example, in case of pure initial
states and two channels, if the filtering operation M� and

either of the channels, $1 or $2, commute—such that the
order of the execution of the channels and of the filtering

can be interchanged, in order to achieve a factorization as
found above for one-sided channels.
Let us contemplate the physical content of Eq. (5): Since

G-concurrence—computed from the product of all
Schmidt-coefficients of a state—vanishes if at least one
of the Schmidt coefficients is zero, it measures entangle-
ment in exactly d levels. Whenever the bipartite system
under study undergoes some dynamics which induce a
redistribution of amplitudes to strictly less than d levels,
G-concurrence vanishes, while entanglement on a strict
subset of levels may prevail. For a channel with a continu-
ous time evolution, e.g., governed by a Lindblad-type
equation, the system’s state evolves continuously within
the set of states. Thus, when initially prepared in a state
with nonvanishing G-concurrence, it is guaranteed to ex-
hibit nonvanishingG-concurrence at least during an initial,
finite time interval, and the time evolution of entanglement
during this period is described by our result (5). At later
times, one has to rely on a hierarchy of entanglement
monotones Ckðjc iÞ, k < d, for example, those which
were defined along with G-concurrence (being the last
member of the hierarchy Gd � Cd) [17]. Similarly to
G-concurrence, they are computed from the sum of all
different products of k Schmidt coefficients, and hence
capture the entanglement of exactly k levels. For them,
we similarly derive

Ck½ð1 � $Þj�ih�j� � Ckðj�iÞCk½ð1 � $Þj�ih�j� d
k

� �
1=k

;

(7)

with an additional binomial coefficient [26] which ac-
counts for the different possibilities to select k out of d
levels.
Finally, we conclude with a remarkable observation

which suggests that the time evolution of G-concurrence
is intimately related to the evolution of the entanglement as
quantified by concurrence [27]: For this, we choose an
entangled pure state with nonvanishing G-concurrence
and expose one of the d-level systems for a time t to a
depolarizing environment. Such environments completely
destroy the information about a system’s state without any
bias and thus turn it into a totally mixed state. When
viewing the quantum system as an information carrier,
this means that all possible independent errors occur with
the same probability. The dynamics of G-concurrence
during this procedure is then, by virtue of (5), entirely
determined by the dynamics of the maximally entangled
state. Depolarizing one subsystem thereof produces iso-
tropic states [28], which can be parameterized by

�F ¼ 1� F

d2 � 1
ð1� j�ih�jÞ þ Fj�ih�j: (8)

The state evolves along the line segment parametrized by F
according to the solution of the Lindblad equation
(Markovian environment assumed) with interaction rate
�, what results in FðtÞ ¼ ½1þ ðd2 � 1Þ expð�2d�tÞ�=d2.
Thus, initially with Fð0Þ ¼ 1, the maximally entangled

PRL 101, 170502 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

24 OCTOBER 2008

170502-2



state is recovered, and thereafter the state closes in towards
the totally mixed state 1=d2, at F ¼ 1=d2, asymptotically
in time. The condition that an isotropic state be of Schmidt
number k [29,30], namely, if and only if k� 1<Fd � k
[30], then determines the points in time when the Schmidt
number drops. Thus, the drop from Schmidt number
k to k� 1 occurs at time tk ¼ ln½ðd2 � 1Þ=ðdk� d� 1Þ�=
ð2d�Þ, and hence entanglement measures quantifying only
entanglement in k levels vanish. In particular, for Fðt2Þ ¼
1=d with t2 ¼ lnðdþ 1Þ=ð2d�Þ, the state turns separable,
whereas for FðtdÞ ¼ ðd� 1Þ=d, at time td ¼ ln½ðd2 � 1Þ=
ðd2 � d� 1Þ�=ð2d�Þ, G-concurrence disappears. The in-
verse of this depletion time of G-concurrence then consti-
tutes a characteristic decay rate �G compared to the decay
rate �C of the generalized concurrence C [27] (which
vanishes if and only if the state is separable). Because of
the high symmetry of isotropic states, the infimum opti-
mization for the concurrence of these high-dimensional
mixed states can be carried out analytically [31], and,
when normalized to the initial concurrence, yields

Cð�FÞ ¼ ðFd� 1Þ=ðd� 1Þ; (9)

for 1=d � F � 1, and Cð�FÞ ¼ 0 otherwise. For the
chosen dynamics, that are encoded in FðtÞ, it decays ex-
ponentially with a small offset, that guarantees it to vanish
at time t2. Its time derivative then determines the rate �CðtÞ
at which concurrence decays. Comparing the characteristic
decay rate �G of G-concurrence to the decay rate �CðtÞ of
concurrence, at short times as illustrated in Fig. 1, yields a
proportionality factor which for any initial pure state only
depends on the system dimension:

�G

�Cð0Þ ¼ d

ðdþ 1Þ lnð d2�1
d2�d�1

Þ �d�1
d: (10)

This indicates that the dynamics of G-concurrence and

concurrence are much interrelated with one-another
although G-concurrence detects only a very specific type
of entanglement, that is entanglement in exactly d levels. It
also suggests that G-concurrence already exhibits most
properties of the evolution of entanglement in general—
in particular, at short times, when entanglement control is
most crucial for possible applications.
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S. Kuhr, M. Brune, J.-M. Raimond, and S. Haroche,
Nature (London) 448, 889 (2007).

[2] Y. Miroshnychenko, W. Alt, I. Dotsenko, L. Förster,
M. Khudaverdyan, D. Meschede, D. Schrader, and
A. Rauschenbeutel, Nature (London) 442, 151 (2006).

[3] J. Benhelm, G. Kirchmair, C. F. Roos, and R. Blatt, Nature
Phys. 4, 463 (2008).

[4] T. Yamamoto, Y. A. Pashkin, O. Astafiev, Y. Nakamura,
and J. S. Tsai, Nature (London) 425, 941 (2003).

[5] L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger,
and M. Arndt, Nature (London) 427, 711 (2004).

[6] E. Schrödinger, Naturwissenschaften 23, 823 (1935).
[7] S. P. Walborn, P. H. Souto Ribeiro, L. Davidovich,

F. Mintert, and A. Buchleitner, Nature (London) 440,
1022 (2006).

[8] L. Aolita, A. Buchleitner, and F. Mintert, Phys. Rev. A 78,
022308 (2008).

[9] N. Kiesel, C. Schmid, G. Tóth, E. Solano, and
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Phys. Rep. 415, 207 (2005).
[12] A. R. R. Carvalho, M. Busse, O. Brodier, C. Viviescas, and

A. Buchleitner, Phys. Rev. Lett. 98, 190501 (2007).
[13] T. Konrad, F. de Melo, M. Tiersch, C. Kasztelan,

A. Aragão, and A. Buchleitner, Nature Phys. 4, 99 (2008).
[14] M. Nielsen and I. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press,
Cambridge, England, 2000).

[15] K. Kraus, States, Effects and Operations: Fundamental
Notions of Quantum Theory (Springer, Berlin, 1983).

[16] J. Preskill, Lecture Notes on Quantum Information
and Computation, http://www.theory.caltech.edu/people/
preskill/ph219.

[17] G. Gour, Phys. Rev. A 71, 012318 (2005).
[18] W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[19] G. Gour, Phys. Rev. A 72, 042318 (2005).
[20] N. Gisin, Phys. Lett. A 210, 151 (1996).
[21] A. Jamiołkowski, Rep. Math. Phys. 3, 275 (1972).
[22] F. Verstraete, J. Dehaene, and B. DeMoor, Phys. Rev. A

64, 010101(R) (2001).
[23] The factorization itself occurs inside the optimization

procedure for the mixed state �$: The G-concurrence

FIG. 1. Evolution of concurrence (solid line) and Schmidt
number (dashed line) as one party of the maximally entangled
state j�i ¼ P

d
n¼1 jnijni=

ffiffiffi
d

p
, (d ¼ 5) passes through a depola-

rizing channel with rate � (resulting in an isotropic state). The
initial decay of entanglement is well approximated (linearly) by
the entanglement at time 0 [Cð0Þ] and when the Schmidt number
drops for the first time [here from 5 to 4, with the initial
entanglement reduced by a fraction 1=ðd� 1Þ, from 1 to 3=4],
which is exactly when G-concurrence vanishes.

PRL 101, 170502 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

24 OCTOBER 2008

170502-3



of the final state evaluates as Gdð�0Þ ¼
inffpi;j�iig

P
i piGd½ðM� � 1Þj�ii�, where the fpi; j�iig de-

fine a pure state decomposition of �$. It is sufficient to op-
timize over a pure state decomposition of �$ instead of �0
(given by fpi; ðM� � 1Þj�iig) if the M� are invertible—
which is the case if j�i is entangled in d-levels.

[24] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W.K.
Wootters, Phys. Rev. A 54, 3824 (1996).

[25] G. Vidal, J. Mod. Opt. 47, 355 (2000).
[26] We used the definition of Ck in terms of the k-th com-

pound matrix in [17]. The resulting Hilbert-Schmidt norm
is then factorized using the Cauchy-Schwarz inequality.

[27] P. Rungta, V. Bužek, C.M. Caves, M. Hillery, and G. J.
Milburn, Phys. Rev. A 64, 042315 (2001).

[28] M. Horodecki and P. Horodecki, Phys. Rev. A 59, 4206
(1999).

[29] Mixed states with Schmidt number k cannot be decom-
posed into pure states which all have Schmidt rank smaller
than k; formally: k ¼ minfpi;j�iig½maxikðj�iiÞ�.

[30] B.M. Terhal and P. Horodecki, Phys. Rev. A 61, 040301
(R) (2000).

[31] P. Rungta and C.M. Caves, Phys. Rev. A 67, 012307
(2003).

PRL 101, 170502 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

24 OCTOBER 2008

170502-4


