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The effect of shear flow on the isotropic-nematic phase transition of attractive colloidal rods is
investigated by a combination of simulations and experiments. The isotropic phase aligns with the
flow, while the nematic phase undergoes a collective rotational motion which frustrates the merging of the

coexisting regions. The location of binodals, spinodals, and the tumbling-to-aligning transition line in the

shear-rate versus concentration plane are investigated. The phase diagrams in the shear-concentration
plane for the various strengths of attractions can be mapped onto a master curve by appropriate scaling.
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Phase transitions occurring in soft matter systems are
significantly affected by flow. Both the nature and location
of the phase transition lines are changed due to the applied
flow [1]. The challenge is to find the parameters that
determine the nonequilibrium steady states under flow
conditions. One important parameter is the interfacial ten-
sion between coexisting phases [2], as is the case for
crystal and liquid phases of spherical colloids under shear
flow [3]. Colloidal-rod suspensions constitute a particu-
larly interesting system to study the effect of flow on their
phase behavior [4,5], since rod orientation is strongly
coupled to the shear field. Rods in the isotropic (/) phase,
align with the flow and become paranematic (P). This
suggests that the transition to the nematic (N) phase, where
rods have orientational order, is facilitated by shear. On the
other hand, rods in the nematic phase undergo a collective
tumbling motion in the presence of shear flow [6-8]. The
question that then arises is how these two effects will affect
isotropic-nematic coexistence. Apart from fundamental
interest, a detailed understanding of the flow behavior of
a model system of attractive colloidal rods is useful for
industrial applications where shear alignment of elongated
objects, such as carbon nanotubes [9], wormlike micelles
[10], and polymers, play a role.

In this Letter, the nonequilibrium phase diagrams of
attractive colloidal rods in shear flow are investigated by
a combination of mesoscale hydrodynamic simulations,
small-angle light-scattering (SALS) experiments, and
rheology. The simulations allow for a microscopic under-
standing of the behavior of coexisting phases and their
interface under shear, including the possible role of col-
lective tumbling motion of rods. In addition, the bino-
dals—which define the concentrations of coexisting
paranematic and nematic states in the shear-rate versus
concentration plane—are determined. Experiments allow
for the determination of the full phase diagrams, including
spinodals—where the homogeneous nematic state be-
comes unstable—binodals, and tumbling-to-aligning tran-
sition lines. Both in simulations and experiments, the
attractive rod-rod interactions are systematically varied,
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which affects the phase behavior, interfacial properties of
coexisting phases as well as tumbling behavior.

Earlier experimental studies have mostly focused on the
shear-induced P-N transition of wormlike micelles [10],
that can break and recombine. For dispersions of hydroxy-
propyl-cellulose, the P-N transition temperature has been
shown to change due to shear flow [11]. Much less is
known about suspensions of monodisperse rodlike colloids
like fd-virus particles. These systems exhibit an /-N phase
transition without flow. The I-N biphasic gap width in the
absence of flow is known to increase significantly when
polymer is added, which induces depletion attractions [12].
The nonequilibrium binodal under shear flow conditions
for a single, fixed strength of attraction has been studied by
rheological experiments on fd-virus dispersions, which
show that the P-N transition concentration changes on
applying flow [13]. Hence, both attractive interactions as
well as flow have a pronounced effect on the location of
P-N transition lines. Also the effect of shear on nematic-
paranematic interfaces in systems of soft repulsive ellip-
soids has been studied by simulations [14].

In our simulations, each rod consists of N,, monomers
with a bond and a bending potential. The bond potential
keeps the distance between monomers essentially fixed at
1, while the bending potential provides rigidity to each rod
[15]. The interactions between the monomers of different
rods are described by a Lennard-Jones potential with a
minimum of € (in units of the thermal energy kzT) and a
diameter o. Molecular dynamics simulations of rodlike
colloids are combined with a mesoscopic description of
the solvent known as multiparticle-collision dynamics
(MPC) (see Ref. [16] for details). The simulation box
consists of 20 X 22 X 30 cubic collision cells with lattice
constant a, and 50 solvent particles per cell. We use the
parameters o = [, = a/4. This hybrid approach has been
shown to account for long-range hydrodynamic interac-
tions between rods [15] and has been successfully applied
to different systems in flow [17]. Lubrication forces, how-
ever, are not accounted for in MPC simulations. The rods
have an aspect ratio of 20. Previous simulations indicate
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that /-N coexistence for such rods occurs in a small
interval of packing fractions ¢ around 0.125 [18], which
we obtain by including 10* rods in the simulation box. To
impose shear, Lees-Edwards boundary conditions are
employed. For a homogeneous fluid, these boundary con-
ditions result in a linear velocity profile (v,, v, v,) =
(yy,0,0), with 7 the applied shear rate (where the
x direction is the flow direction and the y direction is the
gradient direction). Shear rates are expressed in simulation

time units y/ma?®/kgT, where m is the mass of a solvent
molecule.

The simulated system is first prepared in equilibrium
with coexisting isotropic and nematic phases, where the
director of the nematic phase is aligned parallel to the
interface. A snapshot of /-N coexistence in equilibrium
is shown in Fig. 1(a). Then, shear is applied with the im-
posed flow direction parallel to the interface. At small
shear rates, rods in the isotropic phase flow-align, i.e.,
become paranematic, and portions of the nematic phase
display collective rotations, as shown in Fig. 1(b) and in
Ref. [19]. These periodic motions were also observed in
simulations for hard rods in a full nematic phase [20]. This
behavior is characterized by both the local concentration

FIG. 1 (color). Snapshots of the simulation box with € = 3.5,
(a) at equilibrium, and (b) in a tumbling event at y = 0.003.
Colors in (a) and (b) are coding the rod orientation: horizontal is
red, vertical is green, and perpendicular to plane of view is blue.
Red arrows in (b) denote flow direction. (c) Time evolution of
the normalized density ¢/, and (d) of the orientational order
parameter S, along the gradient direction. For a movie see
Ref. [19].

and the local orientational order parameter S.(y) =
[3a,4, — 1]/2, where ii, is the component of the unit
vector connecting the end points of a rod along the flow
direction, and the overline indicates averaging over the
vorticity and flow directions. The time dependence of the
density ¢ and orientational order parameter S, of rods
as a function of the position y along the gradient direc-
tion is plotted in Figs. 1(c) and 1(d). As can be seen from
Fig. 1(c), the nematic phase has a higher concentration
than the isotropic phase, as expected. More importantly,
Fig. 1(d) demonstrates the periodic tumbling motion of
rods in the nematic phase. This is seen for all nematic
domains in coexistence with paranematic regions and for
all strengths of attractions studied. At long times, both
Figs. 1(c) and 1(d) show that the nematic phase is some-
what displaced and seems to split into two nematic do-
mains. Such a behavior is also seen experimentally by
confocal microscopy [19]. Binodals are determined at
times where the density of the paranematic state has
reached a stationary value (this happens approximately at
vt =25, 50, 100 for € = 3.0, 3.2, 3.5, respectively) by
averaging over about one tumbling period. The binodals
obtained in this way are plotted in Fig. 2(a) for different
attractions. Here, the concentration is expressed in terms of
¢nem and the shear rate is scaled by a factor y,,,, such that
all data points fall onto a master curve. This master curve is
obtained from the combined set of data from both simula-
tions and experiments (which will be discussed below).
The scale factor y,,,x can be identified with the maximum
of the binodal. Simulations for shear rates just above .«
indeed indicate a homogeneous state. The inset in Fig. 2(a)
shows that the effect of the increasing attraction between
rods is that the coexistence region widens and that ¥,
increases. Because of slowing down of the dynamics and
large-scale correlations close to spinodals, considerably
longer simulations with larger system sizes would be re-
quired to determine the location of spinodals.

In our experiments, we use fd-virus suspensions where
depletion attractions are varied through addition of dex-
tran. fd virus is a long and thin rodlike particle (880 nm
long, aspect ratio 120, persistence length 2.2 um) [12].
Suspensions of varying colloid and dextran concentrations
were prepared as follows. First, a homogeneous fd-virus
suspension of 21.1 mg/ml fd virus with dextran (480 kd,
Pharmacosmos) in 20 mM Tris buffer with 100 mM NaCl
is allowed to macroscopically phase separate into an iso-
tropic and nematic phase. A volume V., of the nematic
phase is then mixed with a volume Vi, of the coexisting
isotropic phase. The concentration of the fd rods is char-
acterized by the fraction ¢pem = Voem/ (Vaem T+ Viso) Of the
nematic phase that is present in the homogeneous mixture.
This ensures that the polymer osmotic pressure (and hence
the strength of attraction) in the homogeneous suspensions
is independent of the rod concentration like for the simu-
lations. The way the phase diagram is determined experi-
mentally is conceptually different from simulations. We
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FIG. 2 (color online). (a) Nonequilibrium phase diagram ob-
tained from simulations and (b) from experiments for various
values of the strength of attraction interaction, with shear rates
normalized by the maximum shear versus the fraction of equi-
librium nematic phase. The open symbols in (b) are spinodal
points. The insets present the unscaled data. Data points for the
lower binodals in the inset in (b) are not shown for clarity. The
dotted lines originating from the maximum of the binodal in the
experimental diagram correspond to the tumbling-to-aligning
transition lines. The solid lines in the inset in (b) at low shear
rates indicate the location of the spinodals for the two lowest
polymer concentrations. The dashed lines are the conjectured
master curve, which are identical in (a) and (b).

obtain the binodal and spinodal experimentally by starting
from a stable, homogeneous shear-induced nematic state at
100 s~!, and taking data immediately after reducing the
shear rate to a prescribed value. We measure the induction
time for the formation of inhomogeneities, as probed with
light scattering, after such a shear-rate quench. The in-
duction time vanishes on approaching the spinodal line,
while it diverges on approaching the binodal. In Figs. 3(a)
and 3(b), the induction time and its inverse are shown as a
function of concentration for several shear rates. The re-
sulting experimental phase diagram is displayed in
Fig. 2(b), scaled in the same way as for the simulations.
The inset also displays the tumbling-to-aligning transition
lines. As was shown for fd-virus suspensions in the fully
nematic phase [7], this transition corresponds to the point
in the flow curve where shear thickening occurs, as well as
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FIG. 3 (color). (a) Induction time and (b) inverse of the induc-
tion time after a shear-rate quench from 100 s~! to 0 (), 0.5
(O), and 1.5 s7! (A) as a function of the fraction of nematic
phase. Lines correspond to the extrapolated linear behavior.
(c) Flow curve of a fd-dextran mixture with an equilibrium
nematic volume fraction of 62%. The insets are snapshots of
light scattering patterns at the indicated shear rates taken after
170 sec. All data correspond to a dextran concentration of

18 /1.

the shear rate at which nematic domains disappear. Both
features can also be observed for flow-induced nematics
with ¢, > 0.4. An example of a flow curve is given in
Fig. 3(c). The middle inset in Fig. 3(c) shows an aniso-
tropic scattering pattern typical for the sheared nematic
structure, while after the peak in the viscosity only back-
ground scattering is observed (right inset). The tumbling-
to-aligning transition lines obtained from these two differ-
ent experiments coincide within experimental error. Note
that the formation of vorticity bands reported earlier [21]
does not affect the light-scattering results.

The most striking feature of Fig. 2 is that the scaled
experimental and simulation binodals overlap for different
attractions, as do the scaled spinodals. Coexisting nematic
states are in tumbling motion while the paranematic state is
flow aligned, so that the interface between the two phases
is highly dynamic. Time-averaged stresses across such
interfaces must be obtained from dynamical equations for
order parameters, together with an expression for the stress
in terms of these order parameters, in order to calculate an
effective interfacial tension. Moreover, the tumbling-to-
aligning transition line ends at the maximum of the bi-
nodal, which is also the point where the tumbling nematic
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FIG. 4. The Peclet number at the maximum P,,, as a function
of the width of the equilibrium phase diagram w for simulations
(A, right axis) and experiments (l, left axis). The open symbols
denote the extrapolation to the limit of hard rods, with w = 0.1
for an aspect ratio of 120 ([J, left axis) and w = 0.25 for an
aspect ratio of 20 (A, right axis).

and flow-aligned paranematic states merge. The spinodal
line ends far below the maximum of the binodal. The
spinodal displays the expected shear-rate dependence;
i.e., shear stabilizes the nematic phase, in line with earlier
experiments [5]. Note that the experiments show a non-
monotonic concentration dependence of the location of the
maximum of the binodal as a function of the strength of
attraction contrary to the simulations. This is probably due
to the different forms of the interaction potentials in simu-
lations and experiments.

Because of the observed scaling, the effect of attractive
interactions on the phase diagram is reduced to two pa-
rameters, ¥,.x and the biphasic gap width w in the absence
of flow, i.e., the difference in packing fractions between the
isotropic and nematic phase in equilibrium, w = (¢, —
b:)/ do (with ¢ the overall packing fraction). These two
parameters are found to be linearly related, as shown in
Fig. 4. Here, the bare rotational Peclet numbers are defined
as Pepux = Vimax/ DY, where DY is the rotational diffusion
coefficient at infinite dilution. For fd virus, DY is taken
from Ref. [7], while for simulations it is calculated from
the length and diameter of a rod [22]. The difference in
slopes in Fig. 4 between the experimental and simulation
results is due to different aspect ratios of the rods, which
affects the rotational self-diffusion close to the phase tran-
sition [23]. The open symbols in Fig. 4 refer to an extrapo-
lation to semiflexible rods with only hard-core repulsive
interactions.

In conclusion, we have been able to establish generic
features of the phase behavior of (attractive) rodlike col-
loids under flow conditions. Binodals and spinodals in the
shear-concentration plane can be mapped onto a master
curve for various strengths of attractions. Furthermore, the
coexisting nematic is in tumbling motion, which explains
why the tumbling-to-aligning transition line in the homo-

geneous state at higher shear rates ends at the maximum of
the binodal.
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