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The equilibrium three dimensional shape of relatively short loops of DNA is studied using an elastic

model that takes into account anisotropy in bending rigidities. Using a reasonable estimate for the

anisotropy, it is found that cyclized DNA with lengths that are not integer multiples of the pitch take on

nontrivial shapes that involve bending out of planes and formation of kinks. The effect of sequence

inhomogeneity on the shape of DNA is addressed, and shown to enhance the geometrical features. These

findings could shed some light on the role of DNA conformation in protein–DNA interactions.
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Interactions between DNA and proteins that cause de-
formations in the structure of DNA are essentially ubiq-
uitous during many life processes inside cells [1]. For
example, in eukaryotes the packing of DNA into nucleo-
some has been shown to lead to formation of sharp bends
[2]. DNA packing in a viral capsid involves a high degree
of confining and bending of viral genomes inside a volume
with dimensions that are comparable to the DNA persis-
tence length [3]. DNA is also deformed by proteins during
gene expression, when relatively short loops of DNA are
formed [4]. It is known that the shape of DNAmatters to its
interaction with proteins such as RNA polymerase [5], and
that proteins locate their specific targets on DNA [1].
Therefore, it will be important to understand the role of
mechanical effects such as tension, torsion, or bending and
their couplings in determining the shape of DNA and their
corresponding potential roles in positioning strategies [6].
In addition, most cases of short genomes and plasmids
have circular shapes in physiological conditions, which
suggests that the exact shape of a circular short segment
of DNA could be of significant biological implications [1].

Conformational properties of relatively short DNA seg-
ments have been the subject of recent studies. These in-
clude experiments on loop formation and measurement of
the persistence length in different scales [7–10], theoretical
works on the probability of loop formation and efforts to
interpret the findings of the experiments [11–20], and
molecular dynamics simulations [21,22]. It is generally
agreed that while modeling DNA as an isotropic elastic
rod works perfectly for length scales larger than the DNA
persistence length (� 50 nm), more elaborate models are
needed to explain the conformational properties of shorter
segments of DNA. These models should take account of
various nonlinearities and structural properties of DNA
elasticity that appear when shorter segments are subject
to extreme constraints on bending and twisting [6,23].

One of the nonlinear features that could affect the elas-
ticity of DNA is the anisotropy in the effective bending
rigidities corresponding to bending into the major and

minor grooves. Such anisotropic bending elasticity models
have been considered in studies of DNA segments of about
10 base pairs (bp) [24], and shown to predict formation of
kinks and modulations in the curvature in 2D [25]. The
anisotropy has also been shown to be responsible for some
of the geometrical features observed in nucleosomal DNA
[26]. However, it is generally presumed to be unimportant
when the DNA segment is long enough to have a few full
helical turns, and, in particular, for segments of about
100 bp that have been the subject of recent controversy
[9,12].
Here we study the three dimensional shape of short

fragments of looped DNA using an elastic model that
includes anisotropic bending rigidities. We show that un-
like the commonly accepted picture, the anisotropy has a
significant effect on the shape of DNA segments of about
100 bp. We find that the equilibrium shape of DNA loops
could involve large changes in the local writhe and/or in
the local curvature, which we generally call kinks. Figure 1
shows an example of a conformation with kinks (in the
writhe). We also examine the effect of sequence depen-
dence on the actual shape by incorporating varying bend-
ing rigidities within the region of permissible values found
in recent molecular dynamics simulations. The sequence
causes the DNA to soften or harden at some places, which
offers the structure the possibility of lowering the overall
energy by undergoing nontrivial deformations. The effect
of the sequence-dependent conformations are probed using
the distributions of local curvature, twist, and writhe, in the
equilibrium shape.
To study the structure of looped DNA, we consider a

simple model in which the molecule is represented as an
anisotropic elastic rod. The rod is parametrized by the
arclength s, and at each point an orthonormal basis is
defined with the unit vectors ê1ðsÞ, ê2ðsÞ, and ê3ðsÞ, where
ê1 corresponds to the direction from the minor groove to
the major groove. The deformation of the double helix is
characterized by the angular strains �1;2ðsÞ corresponding
to bending in the plain perpendicular to ê1;2ðsÞ and �3ðsÞ
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corresponding to twist. The elastic energy for the deforma-
tion of DNA in units of thermal energy (kBT � 1=�) is
written as [27] �E ¼ 1

2

R
L
0 ds½A1�

2
1 þ A2�

2
2 þ Cð�3 �

!0Þ2�, where A1 and A2 are the bending rigidities for the
‘‘hard’’ and ‘‘easy’’ axes of DNA cross section, C is the
twist rigidity, and !0 ¼ 1:85 nm�1 is the intrinsic twist of

B-DNA. In terms of Euler angles, we have �1 ¼
_� sin� sinc þ _� cosc , �2 ¼ _� sin� cosc � _� sinc , and

�3 ¼ _� cos�þ _c , where the dot denotes differentiation
with respect to s. In order to find the ground state of the
system we should minimize this functional subject to the
constraints in the system. For closed loops one of the
constraints is to conserve the linking number, which can

be expressed in terms of the Euler angles as 2�Lk ¼
R
L
0 dsð _�þ _c Þ ¼ ð�þ c ÞjL0 [28]. Another constraint in

the problem is a global vector constraint that guarantees
a closed loop, and is written as

R
L
0 dsê3ðsÞ ¼ 0. We also

note that our Lagrangian is invariant under a translation by
one half of the length of the loop. Therefore, we only focus
on half of the loop, and demand that the tangent vectors at
the two ends of the two halves are opposite to each other to
ensure continuity. There is another important issue with
regards to the linking number. In order to have a closed
loop the two end base pairs should meet each other in
phase, which means that the linking number for a closed
loop is an integer. As a result, we might have to underwind
or overwind the molecule to produce a loop. In the case of

B-DNA, the pitch is nearly 10 bp long, and for example, a
94 bp fragment of DNA can form a loop if it is underwound
by the spontaneous twist of 4 bp, or overwound by that of
6 bp, before the ends are joined up. It is not clear a priori
which one is more favorable, and one should compare the
energies of both solutions to decide that. Therefore we
solve the Euler-Lagrange differential equations subject to
the boundary conditions of �ð0Þ ¼ c ð0Þ ¼ 0, �ð0Þ ¼ 0,
�ðL=2Þ ¼ �, and c ðL=2Þ ¼ �n, where n is the linking
number of the DNA or the number of DNA turns.

Furthermore, we set _�ð0Þ ¼ 0 just to fix the starting plane
of the loop.
The equilibrium structure of the loop depends on the

values of the elastic constants. While a direct experimental
determination of the anisotropic bending rigidities is still
lacking, a recent simulation suggests a range of values of
A1 ¼ 47–76 nm and A2 ¼ 24–51 nm, depending on the
sequence of the nucleotides [29]. In order to examine the
effect of the anisotropy, here we consider a representative
case of A1 ¼ 75 nm and A2 ¼ 37 nm, and compare it with
the isotropic case where A1 ¼ A2 ¼ 50 nm. Both of these
choices will lead to a persistence length of A ¼ 50 nm,
which can be calculated via A�1 ¼ 1

2 ðA�1
1 þ A�1

2 Þ [30].

There are several suggested values for the DNA twist
rigidity in the range of 50–110 nm [31], and we consider
a representative value of C ¼ 75 nm.
In order to decrease the elastic deformation energy, the

bent anisotropic rod can explore nonplanar configurations.
To probe the 3D structure of the DNA, we calculate the
values of the local curvature, defined as �ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2

1 þ�2
2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2sin2�þ _�2

q
, the local writhe wrðsÞ ¼

L
2�

_�ðsÞ½1� cos�ðsÞ�, and the local twist twðsÞ ¼ L
2� �

½ _�ðsÞ cos�ðsÞ þ _c ðsÞ� [28]. In Fig. 2, these geometric
measures are plotted for half of the DNA loop for two
lengths of 87 bp and 94 bp, for the anisotropic model. The
curvature is normalized with the uniform curvature of an
isotropic untwisted circled rod �0 ¼ 2�=L. Because of the
anisotropy, the local twist and the local curvature modulate
around their mean values. Note that an increase in the
curvature always coincides with a decrease in the twist,
and vice versa. The local writhe achieves nonzero values,
which indicates that the loop goes out of plane. The writhe
could actually become very large at a singular point (owing

to large values of _�), which corresponds to the presence of
a kink in the structure of the looped DNA, as shown in
Fig. 1.
Sequence inhomogeneity of DNA causes variations in

the local bending rigidities A1 and A2 along the DNA. The
molecular dynamics simulation by Lankas et al. [29] sug-
gests that sequence dependence can cause a change of
10%–20% in the bending rigidities locally. To see the
effect of sequence on the shape of short DNA loops, we
consider a random sequence with a Gaussian distribution
around the anisotropic bending rigidities used above with a
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FIG. 1 (color online). The ground-state conformation for a
94 bp DNA loop with bending anisotropy (A1 ¼ 75 nm and
A2 ¼ 37 nm). The center line of DNA is shown by a solid
(blue or dark gray) line. In the right panel, the position of
each base is shown by solid circles and the two strands of
DNA are shown in different colors. The positions of kinks are
shown by two arrows in the top left panel.
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width of 7 nm in the resulting persistence length around its
mean value of 50 nm. In Fig. 2, the effect of the Gaussian
random sequence on the local shape parameters has been
shown. One can see that the curvature modulations in some
places have been sharpened, presumably because there are
softer places along the DNA available for accommodating
the modulations that are needed for overall equilibrium.
While some of the bends are sharp enough to be called
kinks, the signature feature in the local writhe seems to be
also present in a system with a random sequence. The
bending kinks in the soft areas are accompanied by un-
twisting of the helix. This behavior can be important for
some biological problems such as specific protein-DNA
interactions, as it suggests that depending on the sequence,
there might be a possibility for proteins to recognize the
target location for an interaction. For example, the so-
called adenine-thymine boxes are known to be relatively
easier places for unwinding, and they are known to be the
starting point for some protein functions. Our results sug-
gest that the anisotropy can help the strands to be opened

up more easily at softer sequences and can facilitate the
searching process of proteins along the DNA.
It is also interesting to examine the effect of the anisot-

ropy on the total writhe Wr and the total twist Tw of DNA.
In our notation, they correspond to the average of their
corresponding local values, namely, Wr ¼ 1

L

R
L
0 wrðsÞds

and Tw ¼ 1
L

R
L
0 twðsÞds, where the local quantities wrðsÞ

and twðsÞ are defined above. Table I shows the values for
the total twist and writhe for two different DNA lengths of
87 and 94 bp. One can check that the sum of the writhe and
the twist is constant for a given length, as required by
White’s theorem [32]. Because in our examples the lengths
of DNA are not integer multiples of the pitch, the molecule
should be underwound or overwound to produce a loop.
For the length of 94 bp, the energy of the underwound
DNA is smaller than the overwound one. We note that the
energy cost of changing the twist of the molecule is re-
duced by the formation of writhe, and that the absolute
value of the total writhe becomes larger when the anisot-
ropy increases. In other words, the system tries to minimize
the energy by combining slight untwisting of the double
strands with increased bending. Implementing this strategy
locally causes harmonious modulations in the geometric
measures of the DNA shape, as can be seen in Fig. 2.
Table I also shows the extremal values of twist, and curva-
ture for the homogeneous and random sequence cases,
which shows that randomness can allow for significant
enhancement in local geometrical features.
Figure 3 shows the total elastic energy of DNA loops of

different lengths for the two choices of the bending elastic
constants. The oscillations in the energy of the loop are
because of the additional twist deformation that is needed
to make a full loop (see above). We have calculated the
energy for both over-twisted and under-twisted configura-
tions in every case, and used the lower value in Fig. 3. For
comparison, for the length of 94 bp the energies of over-
and under-twisted states are found as 41:8kBT and
36:1kBT, respectively. One can see that the anisotropic
system has a lower energy for all lengths, but the difference
(as compared to the thermal energy kBT) is negligible.
Introducing inhomogeneity in the bending rigidities (as

TABLE I. Comparison of the geometric features and energies
for the isotropic (I), anisotropic (A), and sequence dependent
anisotropic (sd-A) models of DNA corresponding to the ex-
amples of Fig. 2. The mean curvature along the DNA length is
denoted by h�i.
model LðbpÞ Tw Wr twmin h�i=�0 �max=�0 �E

I 87 8.91 0.09 8.90 1.01 1.03 36.6

A 87 8.90 0.10 8.88 1.04 1.36 36.4

sd-A 87 8.90 0.10 8.87 1.06 2.54 34.1

I 94 9.12 �0:12 9.11 1.02 1.05 36.2

A 94 9.12 �0:12 9.09 1.05 1.37 36.1

sd-A 94 9.12 �0:12 9.08 1.07 2.17 34.6
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FIG. 2 (color online). The local writhe wr, twist tw, and
curvature � for half of the looped DNA for the two lengths of
87 bp and 94 bp. The solid red (medium gray) lines correspond
to A1 ¼ 75 nm and A2 ¼ 37 nm, the dashed blue (dark gray)
lines correspond to a Gaussian random sequence centered around
A1 ¼ 75 nm and A2 ¼ 37 nm with a width of 7 nm in the
effective persistence length (the mean value of persistence length
is 50 nm), and the light green (light gray) lines correspond to
A1 ¼ A2 ¼ 50 nm.
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in the example shown in Fig. 2) can lower the energy of the
system significantly, as Table I shows. As the energy
difference between the isotropic and anisotropic looped
DNA is not large, we do not expect that anisotropy without
sequence dependency can change the J factor significantly.
In the example given in Fig. 2, sequence disorder can
reduce the energy by �2kBT, which could increase the
J-factor value by a factor of �10.

We find that both torsional and bending kinks will form
in DNA loops to reduce the elastic energy cost by taking
advantage of bending and torsion along the easy axis as
much as possible. Atomistic modeling studies using mo-
lecular dynamics simulations support the presence of kinks
along highly deformed DNA [21]. The kink corresponds to
a concentrated region of high curvature and/or torsion, and
one wonders whether it might cause the hydrogen bonds to
break in that area. We find that the maximum bending
energy stored in a kink is �0:6kBT per base pair for the
sequence-dependent anisotropic model, which is much
smaller than the energy of the hydrogen bonds that is
�10kBT per base pair. Finally, we note that the elastic
energy of the anisotropic model in the equilibrium con-
formation of the isotropic model is �4kBT higher than its
own ground-state energy for the lengths used here. This
means that the specific geometrical features of the aniso-
tropic looped DNA are robust, and will not be blurred by
thermal fluctuations.
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FIG. 3 (color online). Energy of looped DNA as a function of
its length for the isotropic (A1 ¼ A2 ¼ 50 nm, solid curve) and
the anisotropic (A1 ¼ 75 nm and A2 ¼ 37 nm, filled circles)
models. The inset shows the energy difference between two
isotropic and anisotropic looped DNA as a function of its length
for the lengths of 90–100 bp.
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