
Causality-Based Criteria for a Negative Refractive Index Must Be Used With Care

P. Kinsler* and M.W. McCall+

Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2AZ, United Kingdom
(Received 7 February 2008; revised manuscript received 18 August 2008; published 15 October 2008)

Using the principle of causality as expressed in the Kramers-Kronig relations, we derive a generalized

criterion for a negative refractive index that admits imperfect transparency at an observation frequency !.

It also allows us to relate the global properties of the loss (i.e., its frequency response) to its local behavior

at !. However, causality-based criteria rely on the group velocity, not the Poynting vector. Since the two

are not equivalent, we provide some simple examples to compare the two criteria.
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Remarkable electromagnetic properties can be seen in
materials engineered so that the phase velocity of
electromagnetic-wave propagation opposes the electro-
magnetic power flow; such materials are often called
‘‘left handed’’ (see, e.g., [1–9]), but are more precisely
described as negative phase velocity (NPV) media. As
might be expected in a rapidly evolving field of research,
a variety of conditions [10–12] for NPV have been pro-
posed in the literature. The presence of a negative refrac-
tive index (NRI) allows for a number of intriguing
possibilities: e.g., the creation of a ‘‘perfect lens’’ that
produces an undistorted image without causing any surface
reflections [13], the possibility of a reversed Casimir force
being used to levitate ultrathin mirrors [14], the automatic
compensation of dissipation or dispersion to enhance quan-
tum interference [15], or the possibility of ‘‘trapped rain-
bow’’ light storage [16].

The dispersive nature of the effective medium parame-
ters is exploited in metamaterials to produce a NRI, as
confirmed through experimental, theoretical, and numeri-
cal studies [2–9,17]. Such metamaterials therefore inherit
unavoidable losses on the grounds of causality. Since
losses can cause a significant drop in performance, a key
challenge is to successfully compensate for loss by adding
gain, but note that care must be taken in theoretical inves-
tigations to ensure that the gain model is both stable and
causal [18,19], and we also need to use the correct NPV
criterion [20]. Here we specifically address the role of the
losses required by causality by considering the famous
Kramers-Kronig (KK) relations (see, e.g., [21]), which
control the relationship between the real and imaginary
parts of the electric and magnetic material responses (i.e.,
the permittivity � and permeability �). Such relations can
also be established for the square of the refractive index
n2 ¼ c2��, as this quantity inherits the analytical proper-
ties of �ð!Þ and �ð!Þ; i.e., it lacks singularities in the
upper half-plane of complex !, and n2ð!Þ ! 1 as ! ! 1
(see, e.g., [18,21]). In a recent Letter, Stockman [22]
adapted the KK relation on n2 to place limits on the
minimum losses that accompany NRI for a medium which
is perfectly transparent at the observation frequency. He
concluded that any significant reduction in the losses near

the chosen observation frequency will also eliminate the
NRI. Whether real metamaterials can in principle be made
with low loss is a question of utmost importance in prac-
tical metamaterial design. Previous work [22] claimed that
the answer is emphatically negative, but we show here that
the answer is actually affirmative.
In this Letter we replace Stockman’s zero-loss criterion

with another causality-based criterion, one capable of giv-
ing useful answers for NPV propagation because it admits
arbitrary linear optical losses both at and away from the
observation frequency. Here we assume a homogeneous
medium with � and � being effective parameters obtained
for the composite metamaterial by, e.g., a modified
S-parameter technique [23,24]. Such effective medium
approaches are less reliable in the short wavelength (high
frequency) regime, but existing analytic attempts only
apply to (at best) thin composite layers [25]. The KK
relation for n2 can be written

Re ðn2Þ � 1 ¼ 2

�
P

Z 1

0

Imðn2Þ
s2 �!2

sds; (1)

where ReðÞ and ImðÞ take the real and imaginary parts;
thus, Imðn2Þ ¼ �0�00 þ �00�0, where �0 and �0 are the real
parts of � and�, with the imaginary parts being �00 and�00.
P takes the Cauchy principal value. Noting that the loss in
the material is important in the calculation of Imðn2Þ,
Stockman transformed Eq. (1) into one relating the mate-
rial loss to the presence of NRI,

c2

vpvg

¼ 1þ 2

�

Z 1

0

Imðn2ðsÞÞ
ðs2 �!2Þ2 s

3ds < 0; (2)

by applying the operation L ¼ !�1@!!
2 to both sides of

Eq. (1). The behavior of several experimental systems was
claimed in [22] to be consistent with this criterion. Here the
NRI condition relies on opposed (real valued) phase and
group velocities, i.e., vpvg < 0. Since the usual acronym

NPV is ambiguous, we refer to vpvg < 0 as NPVG (i.e.,

NPV with respect to group velocity); the usual case [26] is
then NPVE (i.e. NPV with respect to energy velocity).
When vpvg < 0, the integral on the right-hand side

(RHS) of Eq. (2) must be negative. Stockman therefore
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concluded that even if the losses vanish at the observation
frequency, there must still be significant loss nearby, oth-
erwise the integral will produce a positive result.
Consequently, systems with imperfect tuning or an insuffi-
ciently narrow operating bandwidth would have their per-
formance degraded.

The limitations of Eq. (2) are threefold.
(1) Imðn2Þ and its derivative must be exactly zero at the

observation frequency !—otherwise the integral diverges
and the constraint becomes uncertain.

(2) It only applies at a particular observation frequency,
despite utilizing the global properties of the material re-
sponse. It can be used to infer the presence of nearby loss,
but does not indicate whether NRI is present there.

(3) The NPVG condition vpvg < 0 is not equivalent to

the NPVE condition ~P � ~k < 0.
These limitations make it hard to determine how losses

might be minimized while still maintaining NPVover some
frequency window.

We now replace Stockman’s criterion with one that
avoids divergences while allowing for nonzero loss, thus
removing the first two limitations given above. All neces-
sary convergence or limiting properties for n2 can be
satisfied if � and � are described by functions of s which
are both rational and causal. If necessary, inconvenient
singularities or divergences in n2ð!Þ can be removed by
considering fð!Þn2ð!Þ, where f is some rational function
of ! designed to cancel the pole or to remove the diver-
gence [28]. The third limitation is intrinsic to the approach,
but has the advantage that it also enables us to evaluate the
presence of NRI (or, strictly, the presence of NPVG) using
causality. Here the group velocity vg amounts to the com-

monly used @!kð!Þ; although imperfect in the case of loss
or gain (see, e.g., [29]), it is that which follows most
naturally here.

Our first step is to integrate the RHS of Eq. (1) by parts,
but only after splitting it into two pieces covering the
ranges ½0; !� �Þ and ð!þ �;1Þ, then taking the limit

� ! 0 at the end. After defining Qj ¼ @js Imðn2ðsÞÞ, and
with Q0ðsÞ ¼ Imðn2ðsÞÞ tending to zero fast enough so that
the s ¼ 1 surface term vanishes, we find that

Z 1

0

Q0ðsÞ
s2 �!2

sds ¼ �
Z 1

0

Q1ðsÞ
2

ln

��������1�
s2

!2

��������ds: (3)

Since the RHS is independent of Q0, we can now obtain a
criterion valid where loss is present at the observation
frequency, and the better behaved integrand means it is
considerably easier to make inferences about the presence
of NRI. After applying L, we find that vpvg < 0 requires

� �
Z 1

0
Q1ðsÞ

�
ln

��������1�
s2

!2

��������þ
s2

!2 � s2

�
ds: (4)

After a second integration by parts, and taking � ! 0,
the surface terms at !� � and !þ � will again cancel;
those at 0 and 1 vanish. With z ¼ s=!, we now have

� � !
Z 1

0
Q1ðz!Þ lnj1� z2jdz

�!2
Z 1

0

�
Q2ð!zÞ þ 1

z2
Q2

�
!

z

��
tanh�1ðzÞdz: (5)

The first (Q1) term can again be integrated by parts; how-
ever, the result adds little insight.
Equation (5) is the most general causality-based crite-

rion achievable, and is, crucially, not restricted to points of
perfect transparency. It depends only on how the loss [as
specified byQ0 ¼ Imðn2Þ] changes with frequency (i.e., on
its dispersion, as given by Q1 and Q2), and not on its
magnitude. Notably, the sign of Q1 (i.e., whether Q0 is
increasing or decreasing with frequency) has a strong
effect on the presence of NRI, as does the sign of Q2

(crudely, whether Q0 is near a minimum or maximum).
The non-Qi parts of the integrands [i.e., lnj1� z2j and

tanh�1ðzÞ] are both strongly peaked at s ¼ !, but never-
theless have finite integrals. Using the expansion
Imðn2ðsÞÞ ’ Q0ð!Þ þ xQ1ð!Þ þ ðx2=2ÞQ2ð!Þ, for x ¼
s=!� 1, we can integrate Eq. (5) analytically in an at-
tempt to obtain an approximate criterion

� & �1:34!Q1ð!Þ½1� 2!Q2ð!Þ� � 1:39!2Q2ð!Þ:
(6)

Unfortunately this fails to convincingly match Eq. (5), and
the attempt only succeeds in emphasizing that it is the
global properties of the loss which constrain the presence
of NRI. Only in Stockman’s zero-loss case might simple
intuition be valid.
Using our causality-based criterion in Eq. (5), we can

now try to infer whether the global properties of Imðn2Þ
promote (or hinder) NPVG. Since vpvg and Eq. (5) are

intimately connected by the KK relations for n2, we used
this to numerically test the examples below; nevertheless,
each expression provides its own unique perspective—one
local, one global. Since we may not always be able to rely
on obtaining n2 from a model (as in [23,24]), we may need
to recover it from experimental data. While the standard
KK relations are prone to generating inaccurate reconstruc-
tions, approaches such as the multiply subtractive KK
method can resolve this for many practical applica-
tions—even nonlinear spectroscopy [30].
We now proceed to test our causality-based criterion.

Since we wish to emphasize general principles, and ensure
the points we make are clear, we consider simple examples
with � ¼ �, rather than more complicated systems. We
also normalize with respect to some suitable reference
frequency. The condition natural to the approach used
here is the NPVG one (i.e., �G ¼ vpvg < 0). This means

we only need to calculate (and show) one of �G or Eq. (5);
we label the result �G. In contrast, the NPVE condition
requires that the phase velocity is opposed to the energy
velocity. This occurs if [12,20]
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�E ¼ �0j�j þ�0j�j< 0: (7)

The two conditions (�G < 0 and �E < 0) will agree if
the group velocity vg and energy velocity vE have the same

sign. However this only holds in the limit of nearly undis-
torted pulse propagation [31], i.e., for small dispersion and
loss. This is likely to be a poor approximation in NRI
materials, which by their nature rely on strong dielectric
or magnetic response. So although our criterion in Eq. (5)
can always be used to judge the presence of NPVG, and
make inferences thereon, this is not strictly equivalent to
the presence of NPVE.

Our first example is a simple double-plasmon resonance,
as in, e.g., [32], setting � and � according to

�ð!Þ
�0

¼ �ð!Þ
�0

¼ 1� !2
p

!ð!þ {�Þ : (8)

A simple test to evaluate the presence of NPVG [and at
the same time test our generalized causality-based criterion
in Eq. (5)] is to increase the losses while comparing it
against the NPVE condition. The results can be seen in

Fig. 1, where �1=3 is plotted to accommodate the vertical
range. For sufficiently weak losses (� � !) the criteria
agree, with both the �E and �G curves remaining below
zero. However, as the losses get stronger, the �G and �E

start to disagree. Nevertheless, we can see that in the
preferred region of ! ’ 1, where � ¼ � ’ �1, they dis-
agree only for very large losses. Here the �G criterion
works relatively well because the plasmonic responses
vary both smoothly and monotonically; hence, vg does

not change sign and remains in accord with vE.
Our next example is again motivated by simplicity, but

also by the possibility of creating NRI in atomic gases. In a
gas, it is possible to design pumping schemes that create
gain [33,34], but the freedom to manipulate the optical
properties relies mainly on the dielectric response (�). Here
we consider two matched pairs of Lorentz resonances, so

that �ð!Þ ¼ �ð!Þ, and
�ð!Þ
�0

¼ 1þ �1!
2
1

!2
1 �!2 � {!1�1

þ �2!
2
2

!2
2 �!2 � {!2�2

:

(9)

We focus on a dominant lossy resonance (�1 < 0), with
a weaker, offset, active resonance (�2 > 0) providing suf-
ficient gain to induce near transparency at a chosen obser-
vation frequency [35]. � and� are chosen equal apart from
a scale factor �0=�0, and are shown in Fig. 2(a), where we
see that near transparency has been achieved at the cost of

FIG. 1. A double (� and �) plasmon system exhibiting NRI,
with both plasma frequencies being !p ’ 1:4. It compares the

(�E) NPVE condition (thick lines) to the (�G) NPVG one (thin
lines). The results shown are for � ¼ 0:02 (solid lines), � ¼ 0:04
(dashed lines), and � ¼ 0:06 (dot-dashed lines).

FIG. 2. A system exhibiting narrow band NRI. It combines a
lossy resonance at !1 ¼ 1 (with �1 ¼ 0:05, �1 ¼ �5) and an
active one at !2 ¼ 1:05 (with �2 ¼ 0:01 and �2 ¼ 1:02).
(a) The real parts and imaginary parts of � and �.
(b) Comparison of the NPVE (�E) and NPVG (�G) criteria.
(c) Expanded view around !2 ¼ 1:05, showing also the NPVG
approximation from Eq. (6) (labeled �GA), and Q1 and Q2.
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increased dispersion, with �0 varying strongly where ! ’
!2. Note how the sign of �G swaps back and forth accord-
ing to the gradients of �0 and �0, even though the values of
�0 and �0 themselves change very little: the utility of the
�G criterion depends entirely on whether vg has the same

sign as vE at the frequency of interest.
The narrow band region of low loss in this system makes

it ideal for examining our NPVG criterion of Eq. (5) in
more detail. First, note that there is an asymmetry about the
loss minimum: below, the two contributions to Eq. (5)
reinforce to help satisfy the criterion; above they partly
cancel, making NRI less likely. This asymmetry is visible
in Figs. 2(b) and 2(c) around ! ¼ 1:05. At the minimum
itself, we can expect the Q1 integral to be small since the
integrand near ! will not only be small but odd; the
behavior will then be dominated by that ofQ2—and indeed
in Fig. 2(c) there is strong qualitative agreement between
Q2 and �G. The criterion therefore controls the width of
allowed low-loss windows: a narrow band window will
have a large Q2, so that our criterion will be more easily
satisfied. This inference is related to Stockman’s—it also
demands sufficient loss close to the observation frequency,
but does not require Q0 ¼ Q1 ¼ 0.

In conclusion, we have derived a causality-based crite-
rion for NRI allowing for frequency dependent (dispersive)
losses at the observation frequency. Our new criterion is
applicable to any medium with the linear response, re-
quired by the Kramers-Kronig relations. We investigated
our causality-based criterion using some simple material
response models, showing that since the group velocity vg

does not always match signs with the energy velocity vE,
the NPVG and NPVE forms of NRI are not equivalent.

Since NPVE (i.e., ~P � ~k < 0) is usually the preferred con-
dition for NRI, this difference needs to be taken into
account before causality-based NRI conditions are utilized.
Nevertheless, our causality-based NPVG criterion provides
unique insight into how the global response of the material
affects its local performance.

The authors acknowledge financial support from the
EPSRC (EP/E031463/1, EP/G000964/1) and discussions
with collaborators at the University of Salford led by A.D.
Boardman and at the University of Surrey led by O. Hess.

*Dr.Paul.Kinsler@physics.org
+m.mccall@imperial.ac.uk

[1] V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[2] Focus issue on Negative Refraction and Metamaterials,

Opt. Express 11, 639 (2003).

[3] D. R. Smith and N. Kroll, Phys. Rev. Lett. 85, 2933
(2000).

[4] R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77
(2001).

[5] T. J. Yen et al., Science 303, 1494 (2004).
[6] S. Linden et al., Science 306, 1351 (2004).
[7] J. B. Pendry, D. Schurig, and D. R. Smith, Science 312,

1780 (2006).
[8] G. Dolling et al., Science 312, 892 (2006).
[9] U. Leonhardt, Science 312, 1777 (2006).
[10] M. McCall, A. Lakhtakia, and W. S. Weiglhofer, Eur. J.

Phys. 23, 353 (2002).
[11] A. L. Pokrovsky and A. L. Efros, Solid State Commun.

124, 283 (2002).
[12] R. A. Depine and A. Lakhtakia, Microw. Opt. Technol.

Lett. 41, 315 (2004).
[13] J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[14] U. Leonhardt and T.G. Philbin, New J. Phys. 9, 254

(2007).
[15] Y. Yang et al., Phys. Rev. Lett. 100, 043601 (2008).
[16] K. L. Tsakmakidis, A.D. Boardman, and O. Hess, Nature

(London) 450, 397 (2007).
[17] N. Wongkasem et al., Prog. Electromagn. Res. PIER 64,

205 (2006).
[18] J. Skaar, Phys. Rev. E 73, 026605 (2006).
[19] A. D. Boardman et al., J. Opt. Soc. Am. B 24, A53 (2007).
[20] P. Kinsler and M.W. McCall, Microw. Opt. Technol. Lett.

50, 1804 (2008).
[21] L. D. Landau and E.M. Lifshitz, Electrodynamics of

Continuous Media (Pergamon, Oxford, 1984).
[22] M. I. Stockman, Phys. Rev. Lett. 98, 177404 (2007).
[23] D. R. Smith et al., Phys. Rev. E 71, 036617 (2005).
[24] A. F. Starr et al., Phys. Rev. B 70, 113102 (2004).
[25] E. Saenz et al., J. Appl. Phys. 101, 114910 (2007).
[26] The usual NPV condition is ~P � ~k < 0, with Poynting

vector ~P and wave vector ~k. Using the electromagnetic
energy density �, we can define an energy velocity vE ¼
~P � ~k=�j ~kj. This allows us to reexpress ~P � ~k < 0 as
vpvE < 0. The definition can also be extended to embrace
moving media, where ~P is replaced by the electromagnetic
energy momentum tensor [27].

[27] M.W. McCall, Metamaterials 2, 92 (2008).
[28] J. S. Toll, Phys. Rev. 104, 1760 (1956).
[29] D. Censor, J. Phys. A 10, 1781 (1977).
[30] K. Peiponen et al., Appl. Spectrosc. 58, 499 (2004).
[31] P.W. Milonni, Fast Light, Slow Light and Left-Handed

Light (Institute of Physics, Bristol, England, 2005).
[32] D. R. Smith, D. Schurig, and J. B. Pendry, Appl. Phys.

Lett. 81, 2713 (2002).
[33] V. Anant, A. F. Abouraddy, and K.K. Berggren,

arXiv:0711.5021.
[34] P. P. Orth, J. Evers, and C.H. Keitel, arXiv:0711.0303.
[35] Note that this has a causal loss profile containing a

minimum—a situation supposedly excluded by Eqs. (5)
and (6) and related discussion in [22].

PRL 101, 167401 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

17 OCTOBER 2008

167401-4


