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We propose a variant of the antiferromagnetic XY model which includes a biquadratic (J2) as well as

the quadratic (J1) interaction on the triangular lattice. The phase diagram for large J2=J1 exhibits a phase

with coexisting quasi-long-range nematic, and long-ranged vector spin chirality orders in the absence of

magnetic order, which qualifies our model as the first instance of a classical spin model that exhibits a

vector chiral spin liquid phase. The interplay of nematic and spin chirality orders is discussed. A variety of

critical properties are derived by means of Monte Carlo simulation.
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Nontrivial orders in frustrated magnets [1] are among
the central issues in the field of condensed-matter physics.
Besides the conventional magnetic order parameter of spin
Si at a site i, there could appear various nontrivial, com-
posite orders such as vector [2,3] and scalar [4,5] chiral
orders [6], and nematic order [7], with additional phase
transitions distinct from the one driven by magnetic order-
ing. For the so-called ‘‘spin liquid’’ states, one or several of
these nontrivial orders would characterize the system in the
absence of magnetic order. This issue is now attracting
revived interest from the viewpoint of the nontrivial glass
transition of spins [8] and multiferroic behaviors [9,10]. In
the latter case, the quantity of relevance is the vector spin
chirality (vSC) defined as �hSi � Sji [11]. The inversion

symmetry (I) breaking implied by nonzero vSC is distinct
from the breaking of time-reversal symmetry in the scalar
spin chirality hSi � Sj � Ski—a concept first introduced in

Ref. [5]. A nonmagnetic quantum spin state exhibiting
(quasi)-long-range correlations of vSC would constitute a
new type of spin liquid-a vector chiral spin liquid (vCSL).
A search for vCSL in one-dimensional quantum spin mod-
els has been taken up in Ref. [10] while its existence was
experimentally demonstrated in Ref. [12]. The search for
vCSL in higher dimensions, either of classical or quantum
spins, has been lacking so far, apart from the work of
Ref. [9] which addressed the stability of the vSC phase
using the Ginzburg-Landau analysis. In this Letter, we
identify a variant of the classical XY spin model which
possesses vSC-ordered, nonmagnetic phase over an ex-
tended temperature window. The vSC-ordered phase, as
it turns out, is characterized by the onset of quasi-long-
range nematic ordering as well, and together constitutes a
chiral-nematic phase.

Our model generalizes the classical XY spin model on a
triangular lattice,

H ¼ J1
X

hiji
cosð�ijÞ þ J2

X

hiji
cosð2�ijÞ; (1)

where �ij is the angle difference �i � �j between the

nearest neighbors hiji. This model contains the usual frus-
tration in the exchange interaction due to the triangular
lattice geometry, together with the possible nematic order
induced by the J2 term. The J2 ¼ 0 limit has been exten-
sively studied, and it is believed to have two phase tran-
sitions at closely spaced critical temperatures [2,13–15].
The Kosterlitz-Thouless (KT) transition temperature TKT

signaling the loss of (algebraic) magnetic order and the
melting temperature of the staggered chirality, T�, are

extremely close, ðT� � TKTÞ=T� & 0:02 at J2 ¼ 0, ham-

pering the interpretation of the intermediate, TKT < T <

T� phase as the chiral phase in which the chirality is

ordered but the magnetism remains disordered. Extension
of the XY model to include large J2 interaction was con-
sidered earlier in Refs. [16,17], where the authors exam-
ined the phase diagram of Eq. (1) on the square lattice,
which lacks frustration. In contrast, our model on the
triangular lattice serves as a minimal model to study two
nontrivial orders: i.e., the chiral order induced by the
geometric frustration, and the nematic order induced by
the biquadratic interaction.
A unique feature of the large J2=J1 region of the model

as noted in Refs. [16,17] is the existence of an Ising phase
transition associated with the vanishing string tension be-
tween half-integer vortices in addition to the KT transition.
This Ising phase transition turns out to correspond to the
onset of the (algebraic) magnetic order. Being driven by J1,
the Ising transition temperature occurs at a much lower
temperature than either the chiral or the nematic transition,
which are both driven by J2. The result is the existence of a
magnetism-free, chiral-nematic phase in the large J2=J1
part of our model.
Phase diagram.—The x� T phase diagram for Eq. (1) is

shown in Fig. 1, where T is the temperature and x param-
eterizes the interaction as J1 ¼ 1� x, J2 ¼ x. Detailed
Monte Carlo (MC) calculations were performed with 5�
105 MC steps per run, on L� L lattice with L ranging from
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15 to 60. Occasional checks were made on a larger lattice
of up to L ¼ 100 to ensure that no discernible changes in
either the critical temperatures or the critical exponents are
obtained from the larger size. Typically, 105 steps were dis-
carded to reach equilibrium. An integer vortex-mediated
KT transition marking the PM-aM boundary bifurcates
into a half-integer vortex-mediated KT transition, marking
the PM-aN boundary, plus an Ising transition [16] when x
exceeds xc � 0:7. The Ising transition in turn separates the
aM from aN. For the whole range of x, the chiral transition
temperature T� stays slightly above TKT, with the possible

exception at x ¼ xc where they may coincide.
KT transition at TKT.—The determination of TKT is

made with the phase stiffness �sðTÞ (helicity modulus)
derived from the second derivative of the free energy
appropriate for the J1 � J2 model. The crossing of �sðTÞ
with the straight line ð2=�Þð ffiffiffi

3
p

=2ÞðJ1 þ 4J2ÞT ¼ ð2=�Þ�
ð ffiffiffi

3
p

=2Þð1þ 3xÞT yields, for a given lattice size L, an
estimate of the critical temperature TKTðLÞ [14].

Extrapolation to L ! 1 using polynomial fits as shown
in the insets of Fig. 2 yields the estimate of TKT. A more
sophisticated method taking into account the logarithmic
correction [18] yields a similar answer [15].
Chirality transition at T�—It is customary to define the

chirality � as the directed sum of the bond current hsin�iji
[13] following the relation hsin�iji � �@F=@Aij. The free

energy F is evaluated with respect to the modified interac-
tion cos�ij ! cosð�ij þ AijÞ. A similar modification of

Eq. (1) results in the bond current

Jij � J1hsinð�ijÞi þ 2J2hsinð2�ijÞi: (2)

This new definition is particularly effective as x ! 1,
where the conventional definition �hsin�iji vanishes iden-
tically due to the Z2 symmetry. For each x, T� was obtained

from Binder cumulant analysis for the new definition of
chirality based on Eq. (2). The conventional definition
(J2 ¼ 0) gave an estimate of T� which differs only in the

third significant digit. Although our analysis showed T� *

TKT for all x, we do not at present rule out the scenario in
which T� and TKT merge at x ¼ xc, resulting in a multi-

critical point there. If that happens, the second-order chi-
rality transition may become weakly first order.
Earlier analysis [14] at x ¼ 0 identified the transition of

� with the non-Ising critical exponents 1=� ¼ 1:2, and
�=� ¼ 0:12, �=� ¼ 1:75. Figure 3 shows � and its vari-

ant, c � ðh�2i � h�i2Þ=T, in scaling form � ¼
L��=�fðtL1=�Þ, c ¼ L�=�gðtL1=�Þ, with t ¼ jT � T�j=
T�, at x ¼ 0:3 and x ¼ 0:8. Same exponents as for the

x ¼ 0 case works well in scaling throughout the whole
phase diagram. Appearance of the non-Ising exponents for
J2 ¼ 0 have been explained in terms of an enhanced finite-
size scaling effect at small sizes due to the screening length
associated with the KT transition, in the cases of the square
lattice [13] and triangular lattice [14]. Here it is equally
possible that the true universality class at T� is that of Ising

transition. At any rate, the identification of the chirality
transition T� well above the magnetic transition for large

J2=J1 ratio is unequivocal and proves the existence of the
magnetism-free, chiral-nematic phase in our model.
Magnetic and nematic orders.—The low-temperature

phase immediately below TKT is either aM or aN, depend-
ing on whether x < xc or x > xc. The magnetic and
nematic correlations are examined on the basis of the

FIG. 1 (color online). Phase diagram of the J1 � J2 model in
Eq. (1) with J1 ¼ 1� x and J2 ¼ x. Two closely spaced tran-
sition temperatures labeled by TKT and T� separate the para-

magnetic (PM) phase from the algebraically correlated phase at a
lower temperature. aM, aN, and C stand for phases with alge-
braic correlations in (antiferro) magnetic and (antiferro) nematic
order parameters, and the long-range correlations in the chirality
order. A further transition from aN to aM occurs as an Ising
transition for x > xc with xc � 0:7. All the symbols have a
thickness in the temperature direction consistent with their
statistical errors. Inset: The onset of chirality order at T� (red)

takes place at temperatures close to, but slightly higher than the
corresponding KT transition temperature TKT (black) for all x.
The Ising transition temperature TI is not shown here for clarity.

FIG. 2 (color online). Phase stiffness
�sðTÞ of the J1 � J2 model for L ¼
15–60 and x ¼ 0:5 and 0.9. The straight
line is ð2=�Þð ffiffiffi

3
p

=2ÞðJ1 þ 4J2ÞT. The
crossing temperature of this line and
�sðTÞ for each L is shown in the inset
along with the extrapolation to L�1 ¼ 0.
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order parameters, M ¼ ð3=L2ÞjPi2Aei�i j, and N ¼
ð3=L2ÞjPi2Ae2i�i j, respectively, where the sum i 2 A
spans the A sublattice sites. For TI < T < TKT, the mag-
netic order parameter is expected to lose its algebraic
character and become short ranged. Indeed, the size de-

pendence ofM as revealed byM� 1=L�MðTÞ for x ¼ 0:9
has the exponents �MðTÞ changing abruptly from � 1
above TI to a small value below it [Fig. 4(a)]. The critical
nature of the nematic order parameterN at x > xc is seen

in the continuous dependence of the exponent �N , N �
1=L�N ðTÞ, as shown in Fig. 4(b) for x ¼ 0:9. The
T-dependent exponent �N ðTÞ continuously decreases as
the temperature is lowered, even in the low-T magnetic
phase T < TI, indicating that the nematic order remains
critical in the whole temperature range 0< T < TKT. A
careful comparison of �MðTÞ and �N ðTÞ for T below TI

revealed a relation �N ðTÞ � 4�MðTÞ, in accord with the
expectations of the spin wave analysis.

Ising transition at TI.—A cartoon picture of the Ising
transition is given in Fig. 5(a), where it is described as the
loss of local ‘‘head-tail’’ order. The choice of the order pa-
rameter for the transition is not unique and, to the best of
our knowledge, has never been given an explicit expres-
sion. Here we choose to analyze the temperature depen-
dence of

I ¼ ð3=L2Þ X
i2A

sgnðcos½�i � �i0�Þ; (3)

where �i0 is the spin angle at some reference site i0 of the
A sublattice. As an Ising-like variable, sgnðcos½�i � �i0�Þ

carries two allowed values �1. In the aN phase, �i and
�i þ � occur with equal probabilities, thus I ¼ 0. An
excellent data collapse in finite-size scaling was obtained
with the 2D Ising critical exponents, � ¼ 1=8, � ¼ 1:75,
and � ¼ 1 for both x ¼ 0:8 and x ¼ 0:9. To be exact, the
orientation of �i with regard to a reference angle �i0 will be
arbitrary as the separation i� i0 tends to infinity in a truly
thermodynamic system. Given the small exponent
�N ðTÞ< 0:03 near T ¼ TI consistent with an extremely
slow decay, however, one can argue that the only effective
low-energy fluctuation is the �-flip of the spin (which
reverses the sign of cos½�i � �i0�) rather than the small-
angle fluctuations (which does not reverse the sign) for the
practical system sizes considered in the MC simulation. As
far as this is the case, our definition serves as a good
measure of the Ising transition.
Chiral-nematic phase.—The central finding of this work

is the identification of the chiral-nematic phase in the
absence of any magnetic order. Although nematic order
is algebraically ordered, the chirality, due to its discrete
nature, can undergo a true long-range ordering.
To make the case clear, we consider the J1 � J2 model

with the discretized angles �i ¼ 2�ni=p, p ¼ 6, and ni an
integer between 1 and 6. The biquadratic J2 interaction
turns into a three-state planar model which is known to
have a second-order transition (not KT transition) into an
ordered phase [19]. In our language, this is the
paramagnetic-to-nematic transition. As the small J1 inter-
action is introduced, the sixfold spin model within the

FIG. 4 (color online). The size dependence of (a) the magnetic
(M) and (b) the nematic (N ) order parameters at x ¼ 0:9 are
shown on the log-log plot. Insets: The critical exponent �MðTÞ
for M� 1=L�MðTÞ and �N ðTÞ for N � 1=L�N ðTÞ.

FIG. 3 (color online). A scaling plot of chirality based on
Eq. (2) and its susceptibility for x ¼ 0:3 and x ¼ 0:8, for lattice
sizes L ¼ 15–60. The exponents used are those of x ¼ 0 [14].
The last row shows the behavior of the Binder cumulants at x ¼
0:3 and x ¼ 0:8, respectively.
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nematically ordered phase is governed by the effective
interaction �ðJ1=2ÞPhiji	i	j, 	i ¼ �1, where the Ising
variable 	i denotes the two opposite orientations of the
spin. Because of this residual interaction there will be an
Ising phase transition at a temperature TI � 3:641�
ðJ1=2Þ � 1:82ð1� xÞ according to known results of the
Ising model in two-dimensional triangular lattice. Above
TI but within the nematic-ordered phase, there are eight
spin configurations allowed for a triangle as shown in

Fig. 6. The chirality for each configuration reads �4
ijk ¼

ð	i	j þ 	j	k þ 	k	iÞ=3, using the Ising variables. For

the downward triangle, the chirality is the opposite: �r
ijk ¼

�ð	i	j þ 	j	k þ 	k	iÞ=3. The net staggered chirality is
then given by ��Pð	i	j þ 	j	k þ 	k	iÞ �P

hiji	i	j.

This quantity, being proportional to the energy of the Ising
model, is positive at any temperature T. Therefore the
chirality remains nonzero at temperature above TI where
magnetic order is lost, but the nematic order is long ranged.
As suggested by this argument, the necessary ingredient
for the vector spin chiral ordering is the Z2 symmetry
breaking already inherent in the nematic ordering transi-
tion at TKT, to which T� is closely tied (Fig. 1).

In summary, we have looked into a planar spin model
with a large biquadratic coupling (J2=J1 	 1) on the

triangular lattice and identified a paramagnetic phase
with coexisting algebraic-nematic, and vector spin chi-
rality orders, i.e., a chiral-nematic phase. The chiral phase
is induced by the breaking of Z2 symmetry in the nematic
transition. The same mechanism may well have counter-
parts in other lattice geometries and in models with quan-
tum spins in dimensions greater than one.
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FIG. 6. Eight possible magnetic patterns within the nemati-
cally ordered phase, which also includes configurations with the
global rotation of all the spins shown here. The corresponding
chirality of each spin configuration is shown inside the triangle.

FIG. 5. (a) A cartoon depicting the loss of head-tail order in
going from aM to aN phase. (b) A snapshot of the chiral-nematic
state at T ¼ 0:2 for x ¼ 0:9 where the Ising transition occurs at
TI ¼ 0:177. Within the same sublattice the ‘‘body’’ of the
arrows, not their tips, are seen to point in the same general
direction.
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