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We investigate the electron transport through a graphene p-n junction under a perpendicular magnetic

field. By using the Landauer-Büttiker formalism combined with the nonequilibrium Green function

method, the conductance is studied for clean and disordered samples. For the clean p-n junction, the

conductance is quite small. In the presence of disorders, it is strongly enhanced and exhibits a plateau

structure at a suitable range of disorders. Our numerical results show that the lowest plateau can survive

for a very broad range of disorder strength, but the existence of high plateaus depends on system

parameters and sometimes cannot be formed at all. When the disorder is slightly outside of this disorder

range, some conductance plateaus can still emerge with its value lower than the ideal value. These results

are in excellent agreement with a recent experiment.
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Because of the recent success in the fabrication of
graphene, a single-layer hexagonal lattice of carbon atoms,
a great deal of attention has been focused on the research of
graphene [1–3]. The unique band structure of graphene
with a linear dispersion relation (E ¼ �@vjkj) near the
Dirac-points leads to many peculiar properties [4]. For
instance, the quasiparticles obey the Dirac-like equation
and have relativisticlike behavior with a zero rest mass. Its
Hall plateaus assume the half-integer values gðnþ
1=2Þe2=h with the degeneracy g ¼ 4 [1,2]. By varying
the gate voltage, the charge carrier of graphene can be
tuned from electronlike to holelike and vice versa. To
examine the interplay between the electronlike and hole-
like quasiparticles, a graphene p-n junction would be a
good candidate. Many exciting phenomena reflecting the
massless Dirac character of carriers [5–7], such as relativ-
istic Klein tunneling [5] and Veselago lensing [6], were
predicted for the graphene p-n junction.

Very recently, the graphene junction has been realized
experimentally [3]. As expected, it was found that in
quantum Hall regime the two-terminal conductance exhib-
its quantized plateaus with half-integer values 4ðnþ
1=2Þe2=h for the p-p or n-n junctions. For the disordered
p-n junction, new plateaus emerge at e2=h and ð3=2Þe2=h.
At about the same time, a theoretical analysis qualitatively
explained the appearance of these plateaus that is due to the
mixture of the electron and hole Hall edge modes in the
p-n boundary [8]. After that, subsequent works have also
investigated the graphene p-n junction [9]. However, these
theories cannot account for the experimentally observed
plateau that appeared at about 1:4e2=h which is lower than
the expected value ð3=2Þe2=h. In addition, the reason that
the expected plateaus at 3e2=h or higher values have not
been observed remained mysterious. In view of this situ-
ation, a thorough and reliable analysis for the graphene p-n
junction is urgently needed.

In this Letter, we theoretically study the electron trans-
port through the p-n junction of disordered graphene under
a perpendicular magnetic field B. By using the tight-
binding model and the Landauer-Büttiker formalism com-
bining with the nonequilibrium Green function method, the
conductance is calculated for both clean and disordered
samples. Numerical results show that the conductance is
very weak in the clean p-n region at large B. Depending on
its strength, the disorder can have two effects. At small
disorder, it can mix the electron and hole edge states which
in turn enhances the conductance. At large disorder, it will
drive the system into the insulating regime. So the con-
ductance is strongly enhanced at the small disorder but
suppressed at the large disorder. At suitable disorders, new
plateaus [with values e2=h, ð3=2Þe2=h, etc.] emerge. The
range of the disorder strength W needed for the existence
of the lowest plateau e2=h is very broad, so this plateau can
easily be observed. But for the plateaus with higher quan-
tization values, the range of W can be very narrow.
Sometimes these higher order plateaus cannot be formed.
When the disorder is slightly off this disorder range, the
conductance plateaus can still emerge, but its value is
lower than the expected one. These results are in excellent
agreement with experimental data.
In the tight-binding representation, the Hamiltonian of

the graphene p-n junction [see Fig. 1(a)] is given by [10]:

H ¼ P
i�ia

y
i ai �

P
hijitei�ijayi aj, where ayi and ai are the

creation and annihilation operators at the discrete site i,
and �i is the on-site energy. In the left and right leads, �i ¼
EL orER, which can be controlled by the gate voltages. The
disorder exists only in the center region. The potential drop
from the right to the left leads is assumed to be linear, i.e.,
�i ¼ kðER � ELÞ=ð2Mþ 2Þ þ EL þ wi, where M is the
length of the center region and k ¼ 0; 1; 2; . . . ; 2Mþ 1
[see Fig. 1(a)]. The on-site disorder energy wi is uniformly
distributed in the range ½�W=2; W=2� with the disorder
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strength W. The size of the center region is described by
the width N and length M, and it has 2Nð2Mþ 1Þ carbon
atoms. In Fig. 1(a), it shows a system withN ¼ 2 andM ¼
4. The second term in Hamiltonian describes the nearest-
neighbor hopping. Because of the existence of the perpen-
dicular magnetic field B, a phase �ij is added in the

hopping element, and �ij ¼
Rj
i
~A � d~l=�0 with the vector

potential ~A ¼ ð�By; 0; 0Þ and �0 ¼ @=e.
The current flowing through the graphene p-n junction

is calculated from the Landauer-Büttiker formula [11]:
I ¼ ð2e=hÞR d�TLRð�Þ½fLð�Þ � fRð�Þ�, where f�ð�Þ ¼
1=fexp½ð�� eV�Þ=kBT� þ 1g (� ¼ L, R) is the Fermi dis-
tribution function in the left and right graphene leads. Here,
TLRð�Þ ¼ Tr½�LG

r�RG
a� is the transmission coefficient

with the linewidth functions ��ð�Þ ¼ i½�r
�ð�Þ ��a

�ð�Þ�,
the Green functions Grð�Þ ¼ ½Gað�Þ�y ¼ 1=½��Hcen �
�r

L ��r
R�, and the Hamiltonian in the center region Hcen.

The retarded self-energy �r
�ð�Þ due to the coupling to the

lead-� that can be calculated numerically [12]. After ob-
taining the current I, the linear conductance is given by
G ¼ limV!0dI=dV.

In the following numerical calculations, we use the
hopping energy t � 2:75 eV as the energy unit. Since the
hopping energy t corresponds to 104 K, we can safely set
the temperature to zero in our calculation. The width N is
chosen as N ¼ 50 in all calculations. Since the nearest-
neighbor carbon-carbon distance is a ¼ 0:142 nm, the
width is ð3N � 1Þa � 21:2 nm for N ¼ 50. The magnetic

field is expressed in terms of� with � � ð3 ffiffiffi
3

p
=4Þa2B=�0

and ð3 ffiffiffi
3

p
=2Þa2B is the magnetic flux in the honeycomb

lattice. In the presence of disorder, the conductance is
averaged over up to 2000 random configurations except
for Fig. 2(b) where only 400 random configurations were
used for each data. In the experiment, the typical concen-
tration of electrons or holes is around 1013=cm2 that cor-
responds to the on-site energies EL, ER � 0:1t. So we will
mainly focused on the region of EL and ER within 0:3t. In
this range of energy, the dispersion relation is linear and
exhibits Dirac behaviors.
We first study the clean graphene junction. Figures 1(b)

and 1(c) show the conductance G versus the Fermi level of
right lead ER when magnetic field B ¼ 0. In the n-n region
with EL, ER < 0, G is approximatively quantized and
exhibits a series of equidistant plateaus at the half-integers
(in the unit of 4e2=h) due to the transverse sub-bands of the
lead with finite width. Because of the linear dispersion
relation, the transverse sub-bands En of the confined gra-
phene are in equidistant instead of En � n2 of the usual
two-dimensional electron gas, while for ER < EL, due to
the fixed sub-band numbers in the left region, no more
higher plateaus appear. On the other hand, in the p-n
region with EL < 0 and ER > 0, there are no plateaus.
The conductance G in the p-n region (ER > 0) is always
less than the corresponding plateau value in the n-n region
(ER < 0). Because of the occurrence of the Klein tunneling
processes [5], the conductance is quite large, e.g., G>
e2=h for almost all positive ER atM ¼ 5. With the increase
of M, the Klein tunneling processes are slightly weakened
and so is the conductance.
Next, we examine the effect of the magnetic field B in

the clean sample. With the increase of B, the equidistant
sub-bands gradually evolve into the Landau levels which
scales as En /

ffiffiffi
n

p
for the Dirac particle. The conductance

plateaus in the n-n region evolve into the Hall plateau, and
the conductance G in the p-n region is strongly suppressed
at small ER. Figures 1(d), 1(e), and 2(a) show G at a high
magnetic field with the magnetic flux (or phase) � ¼
0:007. We see perfect Hall plateau in the n-n junction
with equidistant in the scale of E2

R [see Fig. 2(a)]. The
plateau values are given by minðj�Lj; j�RjÞe2=h where ��

FIG. 2 (color online). The conductance G (in the unit of
2e2=h) vs EL and ER with M ¼ 20, � ¼ 0:007. (a) W ¼ 0
and (b) W ¼ 2.
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FIG. 1 (color online). (a) The schematic diagram for a zigzag
edge graphene p-n junction. (b)–(e) the conductance G vs ER for
different center lengthsM atW ¼ 0. The parameters EL ¼ �0:1
for (b) and (d), EL ¼ �0:2 for (c) and (e), � ¼ 0 for (b) and (c),
and � ¼ 0:007 for (d) and (e).
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is the filling factors in the lead-�. However, in the p-n
region (ER > 0 and EL < 0), no plateaus exist. G is small
and strongly depends on the junction length M. For small
filling factors �L and �R or the large junction length M, G
is almost zero. This is because for the clean p-n junction,
the Hall edge states for electrons and holes are well sepa-
rated in space and cannot form mixture states leading to a
very small conductance G.

In the following, we shall focus on how the conductance
G is affected by disorders. Figure 2 plots G versus the
energy EL and ER with disorder strength W ¼ 0 and W ¼
2. In the presence of disorders,G in the p-n and n-p region
are strongly enhanced due to the mixture of the electron
and hole Hall edge states, while G in the n-n and p-p
regions are slightly weakened. At fixed filling factors �L

and �R, G is approximatively a constant. As �L or �R

varies, a jump occurs in G with the borders between �L

and �R regions clearly seen in Fig. 2(b).
Now we investigate the effect of disorders on the con-

ductance in more detail. Figure 3 depicts the conductance
vs ER at fixed EL ¼ �0:1 (�L ¼ �2) and �0:2 (�L ¼
�6). When W ¼ 0, G is small in the p-n region and G
exhibits Hall plateaus in the n-n region. With the increase
of W from 0, the conductance G in the p-n region is
strongly enhanced even for very small W. For example,
for W ¼ 0:02 or W ¼ 0:05, G is greater than 0:2e2=h,
which is much larger than that (G< 0:001e2=h) at W ¼
0 [see Figs. 3(a) and 3(c)]. When W ¼ 0:1, the lowest
conductance plateau with �L ¼ �2 and �R ¼ 2 is well
established with its plateau value at e2=h. In particular,
this plateau remains for a broad range of disorder strength
W (from 0.1 to 3). For higher filling factors, the conduc-
tance is also enhanced by the disorder, but it requires much
larger disorder to reach its ideal plateau value at
½j�Ljj�Rj=ðj�Lj þ j�RjÞ�e2=h. For example, for �L ¼ �2
and �R ¼ 6 or �L ¼ �6 and �R ¼ 2, the conductance
reaches the plateau of ð3=2Þe2=h when W ¼ 2 [see
Figs. 3(b) and 3(d)]. In the n-n region, the Hall plateau is

not affected by small disorders and kept their values at
minðj�Lj; j�RjÞe2=h. If the disorder strengthW is increased
further, the conductance G starts to drop in both n-n and
p-n regions. For very large W (e.g., W ¼ 6 or larger), the
system enters the insulating regime and G is very small for
all EL and ER. Here, we wish to emphasize two points:
(i) We have seen that the new plateau survives only within
certain range of W ¼ ½Wmin;Wmax�. When the disorder is
slightly below Wmin or above Wmax, G still exhibits a
plateau, but its value is less than the value of ideal plateau.
For example, the plateau of �L ¼ �2 and �R ¼ 6 is less
than ð3=2Þe2=h when W ¼ 1 and W ¼ 3 [see Figs. 3(c)
and 3(d)]. (ii) For some high filling factor region (e.g.,
�L ¼ �6 and �R ¼ 6), the conductance plateau does not
emerge at all for any W. Because it is much more difficult
to completely mix all states for the case of high filling
factor, so the system goes to the insulating regime before
the occurrence of the complete state mixing. These nu-
merical results are in excellent agreement with the experi-
ment [3].
We now focus on the conductance vs disorder strength

for energies EL and ER shown in Fig. 2(a) (solid dots).
In the n-n region, the Hall edge states are very robust
against disorders so the conductance remains quantized
at small W [see Fig. 4(b)]. At large disorders, the edge
states are destroyed, and the Hall conductance decreases
monotonically with increasing of W. In the p-n region
[Figs. 4(a), 4(c), and 4(d)], the enhancement of conduc-
tance due to the states mixing at moderate disorders is
clearly seen. For the lowest filling factors with �L ¼ �2
(EL ¼ �0:1) and �R ¼ 2 (ER ¼ 0:1), G reached its ideal
plateau value e2=h atW ¼ 0:09 and stayed there untilW ¼
3 [see Fig. 4(a)]. We emphasize that this range of disorder
W (from 0.09 to 3) is very broad, extending in almost 2
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FIG. 3. The conductance G vs ER for the different disorder
strengths W, with the parameters M ¼ 20, � ¼ 0:007. (a),
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40 for (d). EL and ER in (a) and (c) are same as in (d).
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orders of magnitude. So the lowest plateau can easily be
observed experimentally. For �L ¼ �2 and �R ¼ 6 (ER ¼
0:2) (or �R ¼ 10 with ER ¼ 0:25), the left side of the
sample has an electron Hall edge state and the right side
has three (or five) holes Hall edge states. As a result of the
mixing of the left-side electron state and one of right-side
hole states, the conductance G develops a step around
e2=h. Upon further increasing W, the complete mixing of
the left-side electron state and all right-side hole states
occurs atW ¼ 1:6 (or 1.7), andG reaches the ideal plateau
value ð3=2Þe2=h [or ð5=3Þe2=h]. Note that this ideal plateau
exists only within the disorder window 1:7<W < 2:6 (or
1:6<W < 2:4) that is much narrower than that of the
lowest plateau. Our results also show that for the case of
higher filling factors (e.g., �L ¼ �6 and �R ¼ 6), the ideal
plateau 3e2=h cannot be reached for any disorders. When
the center region becomes longer or shorter, the conduc-
tance G shows similar results [see Figs. 4(c) and 4(d)]. For
a short center region (e.g., M ¼ 10), G reaches the ideal
lowest plateau at a larger W with a smaller plateau width.
The high conductance plateau at �L ¼ �6 and �R ¼ 6 also
appears. On the other hand, for a longer center region (e.g.,
M ¼ 40),G reaches the ideal lowest plateau at a smallerW
with a wider plateau. Except for the lowest plateau, all
other plateaus do not appear for M ¼ 40. When the width
N of graphene ribbon becomes wider or narrower, similar
results are obtained. In addition, for the wider ribbon, more
conductance plateaus emerge due to the fact that it has
longer distance for the mode mixing.

Up to now, we only consider the zigzag edge graphene.
In fact, for the armchair edge as well as edges with other
chirality, they all have very similar behaviors: the conduc-
tance G exhibits plateau structure at suitable range of W.
The lowest plateau is the easiest to emerge and can survive
for a broad range of W, but the existence of high plateaus
depends on system parameters. In addition, we also find
that these effects are the strongest for the zigzag edge
graphene, and the weakest for the armchair edge graphene.
For graphene edges with other chirality, the effects are in
between.

Finally, we study the conductance fluctuation rmsðGÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihG� hGii2p

, where h. . .i is the average over the disorder
configurations with the same disorder strengthW. Figure 5

shows rmsðGÞ versusW with the same set of parameters as
in Figs. 4(a) and 4(b). In the n-n region [see Fig. 5(b)],
there is no fluctuation of the Hall edge states at small W.
When disorder increases, the conductance fluctuates when
the edge states are partially destroyed. At large disorders,
rmsðGÞ eventually goes to zero, and the system enters the
insulating regime. On the other hand, in the p-n region [see
Fig. 5(a)], the fluctuation rmsðGÞ is small for both small
and large W. But rmsðGÞ is large for intermediate W and
usually exhibits a double-peak structure. In particular,
rmsðGÞ does not have the plateau although the conductance
has a very long plateau especially at �L ¼ �2 and �R ¼ 2.
In summary, the electron transport through graphene p-n

junctions under the perpendicular magnetic field is numeri-
cally studied.We find the conductance is quite small for the
clean p-n junction. But the disorder can drastically en-
hance the conductance leading to the conductance pla-
teaus. The lowest conductance plateaus can sustain for a
very broad range of disorder strength (about 2 orders of
magnitude), but the higher plateaus are difficult to form.
When the disorder is slightly outside of this disorder range,
some conductance plateaus in G vs ER curve can also
emerge with plateau value smaller than the ideal value.
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[9] B. Özyilmaz et al., Phys. Rev. Lett. 99, 166804 (2007);

A. V. Shytov et al., arXiv:0708.3081.
[10] D. N. Sheng, L. Sheng, and Z.Y. Weng, Phys. Rev. B 73,

233406 (2006); Z. Qiao and J. Wang, Nanotechnology 18,
435402 (2007).

[11] W. Ren et al., Phys. Rev. Lett. 97, 066603 (2006).
[12] D. H. Lee and J. D. Joannopoulos, Phys. Rev. B 23, 4997

(1981); M. P. Lopez Sancho et al., J. Phys. F 14, 1205
(1984); 15, 851 (1985).

0.01 0.1 1 10
0.0

0.1

0.2

0.3

0.4

0.5
(b)

 

rm
s(

G
) 

 (
2e

2 /h
)

(a)

0.1 1 10
W

 

W

FIG. 5. rmsðGÞ vs ER. The parameters in (a) and (b) are the
same as in Figs. 4(a) and 4(b), respectively.

PRL 101, 166806 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

17 OCTOBER 2008

166806-4


