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We present an explanation for the anomalous behavior in tunneling conductance and noise through a

point contact between edge states in the Jain series � ¼ p=ð2npþ 1Þ, for extremely weak backscattering

and low temperatures [Y. C. Chung, M. Heiblum, and V. Umansky, Phys. Rev. Lett. 91, 216804 (2003)].

We consider edge states with neutral modes propagating at finite velocity, and we show that the activation

of their dynamics causes the unexpected change in the temperature power law of the conductance. Even

more importantly, we demonstrate that multiple-quasiparticle tunneling at low energies becomes the most

relevant process. This result will be used to explain the experimental data on current noise where tunneling

particles have a charge that can reach p times the single-quasiparticle charge. In this Letter, we analyze the

conductance and the shot noise to substantiate quantitatively the proposed scenario.
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Introduction.—Noise experiments in point contacts have
been crucial to demonstrate the existence of fractionally
charged quasiparticles (QPs) in fractional quantum Hall
systems [1]. In particular, it was proved that, for filling
factor � ¼ p=ð2npþ 1Þ, with n; p 2 N, the QP charge is
given by e� ¼ e=ð2npþ 1Þ [2–4]. A suitable framework
for the description of these phenomena is provided by the
theory of edge states [5,6]. For the Laughlin series (p ¼ 1),
a chiral Luttinger liquid theory (�LL) with a single mode
was proposed and shot-noise signatures of fractional
charge were devised [7]. For the Jain series [8] (p � 1),
extensions were introduced by considering p� 1 addi-
tional hierarchical fields, propagating with finite velocity
[9], or two fields, one charged and one topological and
neutral [10,11]. At intermediate temperatures, the experi-
mental observations of tunneling through a point contact
with � ¼ 1=3 [12] are well described by the �LL theory
[13], which interpolates between the strong and the weak
backscattering limits. However, at low temperatures and
weak backscattering, the current presents unexpected be-
haviors [12,14,15]. For instance, the backscattering con-
ductance decreases for T ! 0 instead of increasing as the
theories would require. Different mechanisms of renormal-
ization of tunneling exponents were proposed to account
for this discrepancy: coupling with additional phonon
modes [16], interaction effects [17,18], or edge reconstruc-
tion [19]. For p > 1, there are other intriguing transport
experiments on a point contact at low temperature and
extremely weak backscattering [14,20] which are not yet
completely understood. The main puzzling observations
for � ¼ 2=5 and � ¼ 3=7 are (i) a change in the power-law
scaling of the backscattering current with temperature and
(ii) an effective tunneling charge, as measured with noise,
that can reach the value pe� for ultralow temperatures T <
20 mK.

In this Letter, we propose a unified explanation of the
above open points. Wewill describe infinite edges with two

fields, one charged and one neutral, following the Lopez-
Fradkin theory [10,11]. However, differently from that
approach, where the neutral mode is nonpropagating and
guarantees only the appropriate fractional statistics of QP
excitations, we assume a finite velocity of propagation. We
will show that the energy scaling of the single-QP tunnel-
ing is modified by the dynamics of neutral modes [21].
This will be sufficient to explain a change in slope of the
linear conductance vs T. However, in order to find an
‘‘effective’’ tunneling charge larger than e� at very low
temperature, it is necessary to demonstrate that tunneling is
dominated by an agglomerate of QPs. We will show that
this is indeed the case.
Multiple-QP processes.—We start to describe tunnel-

ing through a point contact in a Hall bar with right or
left edges (j ¼ R=L) of infinite length [10,11]. Edge j
consists of a charged mode �c

j and a neutral mode �n
j ,

mutually commuting [22]. The commutation relations are

½�c=n
j ðxÞ; �c=n

j ðx0Þ� ¼ i��c=n�c=nsgnðx� x0Þ, with �c=n ¼
þ=� , �c ¼ �, and �n ¼ 1. The electron number density
is �jðxÞ ¼ @x�

c
jðxÞ=2�. The real-time action Sj is (@ ¼ 1)

Sj ¼ 1

4��

Z
dtdx@x�

c
jð�@t � vc@xÞ�c

j

þ 1

4�

Z
dtdx@x�

n
j ðþ@t � vn@xÞ�n

j ; (1)

where�n
j is counterpropagating with respect to�

c
j and has

velocity vn � vc. Consequently, the relation between the
bandwidths!c=n ¼ vc=n=awill be!n � !c, where a

�1 is

the momentum cutoff.
The operator that annihilates an agglomerate of m QPs

for the jth edge can be written in the bosonized form

�ðmÞ
j ðxÞ ¼ F mffiffiffiffiffiffiffiffiffi

2�a
p ei½

ffiffiffiffiffi
�m

p
�c

j ðxÞþ
ffiffiffiffiffi
�m

p
�n

j ðxÞ�: (2)

Here F m corresponds to the ladder operator for changing
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the number ofm QPs. It plays the role of a Klein factor and
in lowest order in tunneling can be neglected. The coef-

ficients are determined by requiring that �ðmÞ
j ðxÞ satisfies

the appropriate commutation relations with the electron

density ½�jðxÞ;�ðmÞ
j ðx0Þ� ¼ �mð�=pÞ	ðx� x0Þ�ðmÞ

j ðx0Þ
and the statistical properties �ðmÞ

j ðxÞ�ðmÞ
j ðx0Þ ¼

�ðmÞ
j ðx0Þ�ðmÞ

j ðxÞe�i
msgnðx�x0Þ. The statistical angle is [23]


m ¼ �m2

�
�

p2
� 1

p
� 1

�
þ 2�k; (3)

where k 2 Z takes into account the 2� periodicity. Thus,
for every value of p, one has

�m ¼ m2

p2
; �m ¼ m2

�
1þ 1

p

�
� 2k: (4)

Equation (4) admits several solutions labeled by different
k � kmax with kmax ¼ Int½m2ð1þ 1=pÞ=2�, where Int½x�
is the integer part of x. For a given m, there is a family

of �ðmÞ
j with the same fractional properties but different

scaling behavior. The local scaling dimension �m of
the m-agglomerate operator is defined as half the power-
law exponent at long times (j�j � 1=!c; 1=!n) [24] in

the imaginary time Green function Gmð�Þ ¼
hT�½�ðmÞ

j ð0; �Þ�ðmÞy
j ð0; 0Þ�i / ��2�m . At T ¼ 0,

G mð�Þ ¼ 1

2�a

�
1

1þ!cj�j
�
gc��m

�
1

1þ!nj�j
�
gn�m

; (5)

where one can clearly recognize in the last term the dy-
namical contribution of the neutral modes. The scaling
dimension is then �m ¼ ðgc��m þ gn�mÞ=2. Note that,
in order to take into account possible additional interaction
effects, we considered in Eq. (5) renormalization parame-
ters gc;n � 1 [25]. They correspond to the renormalization

of the dynamical exponents induced by a coupling of the
fields with independent dissipative baths [16]. The micro-
scopic models underlying these renormalizations were ex-
tensively treated in literature [16–19]. The most relevant
operator in the m family will then have the minimal value
�min

m ¼ ½gc��m þ gn�
min
m �=2 given by the minimal value

of �m in Eq. (4):

�min
m ¼ m2ð1þ 1=pÞ � 2kmax: (6)

Let us now identify the dominant process for specific cases.
In the Laughlin series (p ¼ 1), one finds �min

m ¼ 0, and
therefore the single-QP tunneling (m ¼ 1) is always the
dominant one since�min

m ¼ m2�min
1 . A different scenario is

present for p � 2. Here one has, for m ¼ 1, �min
1 ¼ 1þ

1=p, while for the p agglomerate �min
p ¼ 0. This allows us

to conclude that agglomerates with m> p are never domi-
nant: �min

m>p > �min
m¼p.

To find the most relevant operator, one has to choose
within the class with 1 � m � p. In the bare case gn;c ¼ 1,

one can show that the p agglomerate is the most relevant
for p � 6. With renormalized exponents gn;c > 1, the

analysis is still possible but more cumbersome; we limit
here the discussion to p ¼ 2; 3, which are directly con-
nected with the experiments at � ¼ 2=5; 3=7 [14]. It is
furthermore possible to show with the above relations
that the p agglomerate is always dominant in the parameter
region gn=gc > �ð1� 1=pÞ, while otherwise the single-
QP tunneling prevails.
We conclude by emphasizing that, for a nonpropagating

neutral mode with vn ¼ !n ¼ 0, the single-QP processes
will always dominate because the neutral mode does not
contribute to the scaling.
Transport.—In this part we restrict the analysis of tun-

neling through the point contact to � ¼ 2=5 and � ¼ 3=7.
In these cases we consider the two most dominant pro-
cesses only: the single QP and the agglomerate of p QPs.

The tunneling at x ¼ 0 is HT ¼ t1�
ð1Þy
R ð0Þ�ð1Þ

L ð0Þ þ
tp�

ðpÞy
R ð0Þ�ðpÞ

L ð0Þ þ H:c:, with t1 and tp the tunneling

amplitudes. Here the operators �ðmÞ
j are the most relevant

representatives in the m family. The tunneling rates at
lowest order in tm are (m ¼ 1; p and kB ¼ 1)

�mðEÞ ¼ �m

Z þ1

�1
dteiEte�½�mW

cðtÞþ�min
m WnðtÞ�; (7)

with �m ¼ ðjtmj=2�aÞ2 and Wc=nðtÞ ¼ P
jh½�c=n

j ð0; 0Þ �
�c=n

j ð0; tÞ��c=n
j ð0; 0Þi the bosonic correlation functions.

The explicit expression of the kernel is WrðtÞ ¼
gr�r ln½ð1þ i!rtÞ�ð�rÞ2=j�ð�r þ iTtÞj2�, where �r ¼
1þ T=!r, with r ¼ c; n, and �ðxÞ is the Gamma function
[26]. In the following, we assume that the neutral mode
bandwidth !n can be comparable with T and with the
external voltage energy e�V, while the charge bandwidth
!c is taken as the largest cutoff energy.
In lowest order, the total backscattering current through

the point contact is given by the sum of the two indepen-
dent processes contributions IB1 and IBp :

IB ¼ X
m¼1;p

IBm ¼ e�
X

m¼1;p

mð1� e�Em=TÞ�mðEmÞ; (8)

with Em ¼ me�V the energy for m-QP tunneling in the
presence of the bias V. The linear backscattering conduc-
tance is then GBðTÞ ¼ P

m¼1;pG
B
mðTÞ, where GB

mðTÞ ¼
ðme�Þ2�mð0Þ=T. It will contribute to the total conductance
via the relation GðTÞ ¼ �e2=2��GBðTÞ. Before analyz-
ing it numerically, we discuss qualitatively the different
scaling regimes. Let us start with GB

1 ðTÞ: For T � !n the
neutral modes participate in the temperature scaling giving

T2ðgc��1þgn�
min
1 �1Þ, while in the opposite limit T � !n the

scaling is driven by the charged modes only with

T2½gc��1�1�. On the other hand, the p agglomerate follows

the power law GB
pðTÞ / T2ðgc��p�1Þ with a scaling driven

always by the charged modes because �min
p ¼ 0. The total
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backscattering conductance will depend on the relative
weights between the single-QP and p-agglomerate contri-
butions. We fix the ratio of the tunneling amplitudes t1=tp
by introducing the temperature T� at which GB

1 ðT�Þ ¼
GB

pðT�Þ.
The experiments [14] suggest the relevance of the p

agglomerate at extremely low temperature so T� <!n

and the renormalization coefficients satisfy gn=gc > �ð1�
1=pÞ. In this case the behavior of the backscattering con-
ductance GBðTÞ presents three distinct power laws:

GBðTÞ �
8><
>:
T2½�gc�1� T � T�;
T2½�gc=p2þgnð1þ1=pÞ�1� T� � T � !n;
T2½�gc=p2�1� !n � T;

(9)

where we explicitly used Eqs. (4) and (6). A sketch of these
behaviors is shown in Fig. 1(a). The solid line is the
backscattering conductance, and the dashed lines are the
three different asymptotic power laws in Eq. (9). At very
low temperatures (region I) the p agglomerate dominates,
while at higher temperatures (regions II and III) the single
QP is dominant. Note that the intermediate temperatures
regime (II), where the neutral modes are effective, will be
accessible only if T� ��!n. Otherwise, we expect a mixing
of regions II and I. Figure 1(b) shows the backscattering
current IB in Eq. (8) for � ¼ 2=5 (solid gray line) evaluated
numerically. The parameters were adjusted in order to fit
the experimental data (black squares) taken from Fig. 2(a)
of Ref. [14]. With respect to the sketch in Fig. 1(a), the best
fit of the experimental data is mainly given by region II,
where the p agglomerate is not fully effective. We warn,

however, that due to the restricted experimental range of
temperatures (roughly one decade) it is not possible to
extract meaningful values for power-law exponents.
Anyway, an estimate of the neutral modes bandwidth of
!n 	 50 mK appears reasonable. This fact could explain
why in experiments at higher temperatures the effects of
the neutral modes are not easily detectable.
Shot noise.—Direct information concerning the effective

charge transferred through the point contact can be ob-
tained via the current noise spectrum S at zero frequency.
In the following, we analyze the shot-noise regime with
T � e�V. Since in the experiments [14] the edges are
extremely weakly coupled, we will restrict our analysis
to lowest order in tm. In this limit the transport through the
point contact has a Poissonian nature, and a Schottky
formula Sm ¼ 2me�IBm for the noise Sm in each channel
can be safely applied [7,13,27], with m ¼ 1; p being the
most relevant tunneling processes. In the same limit, the
different tunneling processes are independent, and the total
noise is the sum of the two individual contributions S ¼
S1 þ Sp ¼ 2e�ðIB1 þ pIBpÞ. Then the effective charge qeff
of the tunneling process will be evaluated from the behav-
ior of the Fano factor F ¼ S=2eIB, via the relation qeff ¼
eF. F is, in general, a measure of a weighted average
charge transmitted via the two processes. Only when one
of the two processes becomes strongly dominant does the
Fano reproduce the corresponding charge, viz. e� for
single-QP tunneling and pe� for the p agglomerate.
For simplicity, we consider the limit T ¼ 0. The current

(8) can be evaluated without any further assumption:

IBm ¼ m
4e���m

!am
c !bm

n

e�Em=!c

�ðam þ bmÞE
amþbm�1
m


 1F1

�
bm; am þ bm;

Em

!c

� Em

!n

�
; (10)

with 1F1ða; b; zÞ the Kummer confluent hypergeomet-
ric function, am ¼ 2gc��m, and bm ¼ 2gn�m. Simi-
larly to the conductance, the current exhibits different
regimes. For E1 � !n the single-QP contribution scales

as IB1 / E2gc�=p
2�1

1 , while for E1 � !n it receives addi-

tional contributions from the neutral modes IB1 /
E2½gc�=p2þgnð1þ1=pÞ��1
1 . This twofold power law is present

only for the single-QP tunneling since the p-agglomerate

current depends only on the charged mode IBp / E2�gc�1
p .

We define V� as the voltage at which IB1 ðV�Þ ¼ IBp ðV�Þ.
From the previous scaling argument, we conclude that for
V � V� the p agglomerate dominates, while for V � V�
single-QP tunneling is more relevant.
In Fig. 2, the Fano factor is shown as a function of the V

for � ¼ 2=5 (solid line) and � ¼ 3=7 (dashed line). One
can easily recognize two regimes with distinct effective
charges: For V � V� the noise is dominated by the single-
QP processes and qeff ¼ e�, while for V � V� the p
agglomerate will prevail with qeff ¼ pe� ¼ �e. Note that

(a) (b)

FIG. 1. (a) Sketch of the backscattering conductance GB vs
temperature in a log-log plot. The dashed lines are the asymp-
totic power laws, and the solid line is the conductance in differ-
ent temperature regimes: I, low; II, intermediate; and III, high T.
In this scheme the parameters are chosen with T� � !n, !n �
!c, and gc�=p

2 > 1. (b) Comparison between the theoretical
backscattering current IB (solid gray line) and the experimental
data (black squares) at � ¼ 2=5 (p ¼ 2) from Ref. [14] with
courtesy of M. Heiblum. Plotting parameters: gc ¼ 3, gn ¼ 4,
!n ¼ 50 mK, !n=!c ¼ 10�2, T� ¼ 20 mK, e�V ¼ 1:16 mK,
�1=�2 ¼ 1:66, and �1=!

2
c ¼ 4
 10�2.
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the width of the transition region is determined by the
difference between the power-law exponents of I1 and Ip.

Indeed, defining the ratio 
 ¼ �min
1 =�min

p > 1, one has a

sharper transition for larger 
 values (see Fig. 2 for � ¼
2=5). The smoothness of the Fano factor could be then
relevant to determine the renormalized parameters and the
voltage at which the p-agglomerate tunneling is clearly
visible.

We observe that the above results on the possibility to
detect an effective tunneling charge qeff ¼ pe� will remain
valid also at finite temperatures as long as T � e�V�. At
higher temperature, the dominance of the p agglomerate is
progressively compromised.

The above facts could explain why in the experiment for
� ¼ 3=7 the limiting value F ¼ 3=7 is not fully reached,
while for � ¼ 2=5 the limiting value is observed.

Conclusions.—We have shown that p-QP agglomerates
can be the most dominant tunneling process through a
point contact at extremely low temperatures in the weak
backscattering regime. Direct signatures of this relevance
are shown in the behavior of the shot noise. The main point
underlying this result is the assumption of neutral modes
propagating at finite velocity. Their dynamical activation
affects the single-QP tunneling scaling and makes it less
relevant than multiple-QP tunneling. In addition, we ex-
plain the double power law observed in the temperature
scaling of the backscattering current.

Though in this work we mainly investigated the experi-
mental observations of Ref. [14], we expect that our results
hold for more general experimental situations. For in-
stance, a super-Poissonian noise has been found in the

complementary regime of tunneling in the strong backscat-
tering limit [28], and indeed an analogous application of
our theory to that limit demonstrates that electron agglom-
erates can be the dominant tunneling events at low energy
for filling factors in Jain’s series. A new generation of
experimental studies of shot noise in point contacts at
low temperatures is thus desirable in order to shed light
on the physics of tunneling of agglomerates.
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