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This Letter addresses the counterintuitive behavior of electrons injected into dense cryogenic media

with negative scattering length L. Instead of strongly reduced mobility at all but the lowest densities due to

the polaronic effect involving the formation of density enhancement clusters (expected in the theory with a

simple gas-electron interaction successfully applied earlier to electrons in helium where L > 0) which

should substantially decrease the electron mobility, an opposite picture is observed: with increasing jLj
(the trend taking place for inert gases with the growth of atomic number) and the gas density, the electrons

remain practically free. An explanation of this behavior is provided based on consistent accounting for the

nonlinearity of the electron interaction with the gaseous medium in the gas atom number density.
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One of the most interesting and still important issues in
physics of cryogenic media is the problem of electron
clusters which emerged almost simultaneously with that
of electron bubbles. However, it is much less transparent
(compared to the case of electron bubbles) from the ex-
perimental side. Although there are some indications of the
existence of electron clusters in xenon [1], they are not
observed on the expected scale in media with compara-
tively high atomic polarizabilities (krypton, xenon) which
are presumably likely to develop various electron autoloc-
alization phenomena. On the contrary, the data on electron
mobility in Ar, Kr, and Xe [2–8] reveal that electrons
remain practically free (compared to mobility of positive
ions possessing the structure of massive polaronic-type
formations) in their motion, at least in the vicinity of the
characteristic electron mobility peak which is observed for
all heavy inert gases.

The existing description [9–11] of electron clusters in
cryogenic media with negative scattering lengths L em-
ploys the well-known approximation [12,13] for the
electron-medium interaction energy, which is linear in
the gas density n. Within this approximation, the minimal
energy V0 of delocalized electron injected into the gaseous
media is calculated as

V0 ¼ 2�@2L

m
n; (1)

where m is the free electron mass. In terms of electron
energy bands in solids, V0 is the conduction band bottom
energy. The case of L > 0 corresponds to formation a
single-electron bubble. On the other hand, a density en-
hancement domain with higher gas atom concentration
(i.e., a cluster) may develop around the electron if L < 0.
The authors of Refs. [9–11] made every effort to provide a
quantitatively accurate description of the gas density
around the localized electron in the linear approximation.
In addition to (1), they also introduced a nonlocal electron-
gas interaction of the type

Eint ¼
ZZ

d3r0d3rnðrÞvðr� r0Þc 2ðr0Þ (2)

where c ðrÞ is the electron wave function, took into account
the deviation of the gas entropy contribution to the total
free energy from the ideal gas, etc. Their final conclusions
[9–11] practically coincide with the intuitively expected
picture: the electron cluster should exist, and the electron
localization degree as well as the cluster mass should
monotonically grow with the density media and polariz-
ability demonstrating exponential sensitivity to the tem-
perature. The outlined approach [9–11] reveals no hints of
electron mobility growth with the medium density [2–8].
In the present Letter we show that in gaseous media with

negative values of L it is possible for an electron, in a
certain range of gas densities and temperatures, to form an
autolocalized state involving the formation of a cluster
with the characteristic length � � aB (where aB is the
Bohr radius) if the electron-gas interaction V0ðnÞ is treated
beyond the linear approximation in n (1). The Letter is
organized as follows. First, the formal grounds for consid-
ering the nonlinear behavior of V0ðnÞ. Then the electron
cluster structure is calculated within the nonlinear ap-
proach. Finally, the nature of deviations from nonlinearity
at small n is discussed.
As already mentioned earlier, the existing theory of

autolocalized electrons in cryogenic media employs the
electron-gas interaction (1). However, the true minimal
energy of an electron injected in inert gases with negative
scattering length (Ar, Kr, Xe) is substantially nonlinear.
Direct experiments [14,15] reveal that the energy V0ðnÞ is
only approximately linear at very small n following
Eq. (1). With further growth of n, the energy V0 reaches
some minimal value Vmin at a certain density nmin after
which it grows again (see Fig. 1; for Ar nmin ¼
13� 1021 cm�3, Vmin ¼ �0:3 eV, for Kr nmin ¼
14� 1021 cm�3, Vmin ¼ �0:66 eV, for Xe nmin ¼ 11�
1021 cm�3, Vmin ¼ �0:83 eV). Most important in our
problem of cluster formation is the range of n near nmin
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where the derivative @V0=@n changes its sign. Indeed, it is
natural to assume that dominating in the problem of self-
consistent calculation of the gas atom number density nðrÞ
will be the densities minimizing the electron-gas interac-
tion energy. Hopefully, the quantitative analysis can be
based on any reasonable interpolation of the true V0ðnÞ
reproducing the correct minimum depth and position. In
fact, we used the simplest polynomial approximation
yielding in addition the correct slope of V0ðnÞ at small n:

V0ðnÞ ¼ 2�@2L

m
nð1þ Anþ Bn2Þ: (3)

The parameters A and B were chosen for each inert gas in
such a way that the correct values [14,15] of the minimum
depth Vmin and position nmin were reproduced.

Formally, the problem of finding the ground state of a
single electron in the gaseous media reduces to minimizing
the free energy F of the entire ‘‘electronþ gas’’ system
with respect to variations of the (spherically symmetric)
electron wave function c ðrÞ and gas atom number density
nðrÞ [16,17],

F ¼
Z

d3r ~FðrÞ; ~F ¼ jrc j2
2m

þ nT lnðnBÞ þ ~Fint;

~Fint ¼ V0ðnðrÞÞc 2ðrÞ; (4)

where BðTÞ is a function of temperature which does not
affect final results and therefore is not specified here. This
procedure results in a set of two coupled equations for nðrÞ
and c ðrÞ:

� @
2

2m
r2c þ VðrÞc ¼ Ec ; VðrÞ ¼ V0ðnðrÞÞ; (5)

4�
Z 1

0
c 2ðrÞr2dr ¼ 1; (6)

nðrÞ ¼ ng exp

�
�jc j2@V0=@n

T

�
; (7)

where ng is the gas atom number density at infinity, nðrÞ is

the local atom number density, c ðrÞ is the electron wave
function normalized to unity, and T is the temperature.
To solve the equation set (5)–(7) we employed (just as in

Refs. [16,17]) the variational approach with c ðrÞ selected
in the form

c ðr; kÞ ¼
�
k3

�

�
1=2

e�kr: (8)

Here the variational parameter k measures the electron
localization. By substituting Eq. (8) into Eq. (7) and find-
ing nðr; kÞ one can calculate the free energy of the sys-
tem FðkÞ (4). To study the possibility of electron auto-
localization at given ng and T one should then plot the

curve �FðkÞ ¼ FðkÞ � Fdeloc [where Fdeloc ¼ V0ðngÞ þ
NT lnðngBðTÞÞ is the total free energy of system consisting

of a uniform gas and delocalized electron described by the
wave function c ðrÞ ¼ const, N being the total number of
gas atoms in the system] and check if this curve has a
minimum which is sufficiently deep compared to the tem-
perature. For single-electron bubbles, where L > 0, this
program was realized in [16,17] where the linear approxi-
mation for V0 was employed. The single-electron bubble
formation proves energetically favorable at sufficiently
low temperatures and sufficiently high densities (threshold

values of temperature and density follow the relation n�
T2=3), and all the parameters of the arising bubble well
satisfy the adopted assumptions: the bubble size is much
larger than the interatomic distance, the free energy mini-
mum depth substantially exceeds temperature, etc. We
omit any quantitative details since for L > 0 the nonline-
arity of V0ðnÞ does not introduce any qualitative correc-
tions to the bubble parameters and the resulting picture is
practically identical to that obtained earlier [16,17].
In the problem with L < 0 we first mention that the

relation

nðr; kÞ ¼ ng exp

�
þ 2�@2jL k c ðr; kÞj2

mT

�
(9)

FIG. 2. Gain in the free energy due to electron localization in
Xe as a function of the variational parameter k in the linear
approximation (curve 1) and taking into account the nonlinear
behavior of V0ðnÞ (curve 2) calculated for ng ¼ 4� 1021 cm�3,

T ¼ 150 K.

FIG. 1. Minimal energy of delocalized electron injected in
argon as a function of gas atom number density as a typical
example of the behavior of V0ðnÞ for heavy inert gases with
negative scattering length.
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following from Eqs. (7) and (1) leads in the linear theory to
an unavoidable singularity in the density distribution
nðr ! 0Þ (in the adopted model which neglects interatomic
repulsion at small distances nothing can prevent the arbi-
trarily strong shrinking of electron wave function and the
corresponding growth of the gas density at the center of the
cluster resulting in infinite reduction of the system free
energy) as illustrated by variational calculations which
yield for �FðkÞ the results plotted in Fig. 2 (curve 1).

By employing a more general expression for nðr; kÞ with
V0ðnÞ specified by Eq. (3) it is easy to see that the trend
towards density enhancement around the localized electron
taking place at relatively large distances from the cluster
core and correctly described by Eq. (9) is stopped near the
cluster center where the derivative @V0=@n changes its
sign. It is also qualitatively clear that the halt in the density
growth is actually important if the uniform gas density ng
far from the cluster core is not too close to nmin. If the
inequality ng � nmin is satisfied, the cluster formation

mechanism defined by Eqs. (5) and (7) becomes inefficient
(no energy gain can be acquired by tuning the gas density
to its optimal value in the vicinity of the cluster center), and
that is actually why electrons in heavy inert gases behave
as practically free particles for gas densities close to nmin.

Now that the singularity suppression mechanism is clear,
one can apply the outlined variational procedure to quan-
titatively test the above qualitative picture concerning the
possibility of electron cluster formation. Calculations re-
veal that at not-too-high temperatures T there do exist
density ranges where the free energy gain due to electron
localization �FðkÞ as a function of k has a minimum with
the depth exceeding T (curve 2 in Fig. 2). Numerical
results for Xe are shown in Fig. 3 where the free energy
gain calculated for electron wave function defined by
Eq. (8) and optimized with respect to k is plotted. It is
clearly seen that the localized state is only energetically
favorable for not-too-low densities outside some interval
around nmin; the characteristic cluster radii prove to be 10–
20 aB. It should be noted that the structure of an arising
localized state proves to be completely different for ng <

nmin and ng > nmin. As already mentioned earlier, the free

energy gain in the localized state occurs due to the prox-
imity of the gas atom density around the electron (r ! 0)
to the density nmin providing the lowest possible interac-
tion energy between the electron and the gas. Therefore, at
ng < nmin the localized state corresponds to formation of a

cluster (i.e., density enhancement in the vicinity of r ¼ 0)
as shown by curve 1 in Fig. 4, while at ng > nmin a single-

electron bubble is formed with the gas atoms squeezed out
of the vicinity of r ¼ 0 (curve 2 in Fig. 4).

Hence, the nonlinear corrections to the interaction en-
ergy (1) behave in qualitatively different ways for L > 0
and L < 0. For positive scattering lengths, nonlinear cor-
rections to Eq. (1) only slightly modify the overall picture
of electron localization arising in the linear approach. On
the contrary, for negative scattering lengths the presence of

nonlinearity in V0ðnÞ becomes critically important since in
the adopted model it is the only factor capable of prevent-
ing the cluster from shrinking to the Bohr length scale.
Therefore, it is very desirable to study the deviation of
V0ðnÞ from the linear approximation (1), at least for small
n. However, in spite of the fact that the problem of calcu-
lating V0ðnÞ has been addressed in many works (e.g., see
Refs. [18]), currently available theoretical results are
mainly numerical in nature and derived by replacing the
disordered medium with an imaginary crystalline solid
consisting of the gas atoms with appropriate density after
which the conduction band bottom is calculated within the
Wigner-Seitz model. Major efforts in these works have
been concentrated on choosing the optimal pseudo-
potential describing the free electron interaction with the
inert gas atom closed shell and correct screening of the
long-range attracting potential ��e2=2r4 due to the
Coulomb interaction between the electron and polarizable
gas atom, � being the atom polarizability. On the other

FIG. 3. Gain in free energy due to electron localization in Xe
as a function of gas atom number density at three different
temperatures.

×

FIG. 4. Gas atom density distribution in the localized state for
Xe for ng ¼ 2� 1021 cm�3 < nmin (curve 1, cluster) and ng ¼
20� 1021 cm�3 > nmin (curve 2, bubble) calculated for T ¼
150 K.
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hand, it is interesting to note that for short-ranged poten-
tials the Wigner-Seitz model allows finding the asymptotic
behavior of V0ðnÞ at small n beyond the linear approxima-
tion through the scattering length L. Indeed, in that case the
requirement of the vanishing of the wave function first
derivative at the spherical cell boundary (whose radius
tends to infinity as n ! 0) results in the following expres-
sion for the conduction band bottom:

V0ðnÞ ¼ 2�@2Ln

m

�
1þ 9

5

L

R
þO

�
L2

R2

��
; (10)

where R ¼ ð 3
4�nÞ1=3. It is seen that the relative corrections

to the linear approximation (1) are proportional to the
small parameter L=R � 1 which is the prediction that
can be tested experimentally. As an example, plotted in
Fig. 5 are experimental data on the low density behavior of
V0ðnÞ for argon in the ½ðV0 � VLinÞ=VLin�3; nÞ coordinates,
where VLin ¼ V0 from Eq. (1). It is obvious that
�V0ðnÞ=VLin / L=R, although the experimental propor-
tionality coefficient is different from that predicted by
Eq. (10). The reason for this discrepancy is most likely
the long-ranged nature of the effective potential for elec-
tron interaction with the gas atom containing the polariza-
tion contribution obeying the r�4 law.

Thus, by taking into account the nonlinear behavior of
V0ðnÞ, it is possible to extend the existing theory of electron
autolocalization in dense gases with positive scattering
lengths (single-electron bubbles in helium) to electrons in
inert gases with negative scattering lengths and describe
possible formation of electron clusters in these media. The
clusters can arise at gas densities both lower and higher
than nmin, and are not formed at densities close to nmin. The
outlined picture is consistent with available data on elec-
tron mobility � in dense cryogenic gases. The point is that
with growing n the possibility of interpreting the mobility
� in terms of single-particle collisions between the elec-
trons and gas atoms is gradually lost. However, if under
these conditions the electron still remains in an almost free

nonlocalized state as suggested by the above analysis, it is
natural to describe its interaction energy with the gaseous
media responsible for scattering by the expression [19]

�V0 ¼ @V0ðnÞ
@n

�n (11)

where �n is the gas density fluctuation of the thermal
origin. It is then obvious that the derivative @V0ðnÞ=@n
vanishing at n ¼ nmin yields a peak in the density depen-
dence of electron mobility. Hence, experimental observa-
tion of electron mobility peaks in all three heavy inert
gases around the respective values of nmin can be consid-
ered as a confirmation of the absence of electron localiza-
tion in the vicinity of the mobility peak.
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m n. Experimental points are taken from Ref. [14].
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