
Physical Mechanism of Ultrafast Flame Acceleration

Vitaly Bychkov,1 Damir Valiev,1,2 and Lars-Erik Eriksson3
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We explain the physical mechanism of ultrafast flame acceleration in obstructed channels used in

modern experiments on detonation triggering. It is demonstrated that delayed burning between the

obstacles creates a powerful jetflow, driving the acceleration. This mechanism is much stronger than

the classical Shelkin scenario of flame acceleration due to nonslip at the channel walls. The mechanism

under study is independent of the Reynolds number, with turbulence playing only a supplementary role.

The flame front accelerates exponentially; the analytical formula for the growth rate is obtained. The

theory is validated by extensive direct numerical simulations and comparison to previous experiments.
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A premixed combustion front propagates either as a
slow subsonic flame (deflagration) or fast supersonic deto-
nation [1]; their velocities differ by 3–4 orders of magni-
tude. However, a slow flame may spontaneously accelerate
and trigger detonation [2–8]. A deflagration-to-detonation
transition (DDT) remains one of the most intriguing and
the least understood effects in hydrodynamics, combustion
science, nonlinear physics, and astrophysics. The DDT
produces detonation in the energetically cheapest way. It
is the key point for explaining Thermonuclear Supernovae
[9] and in many technological applications like design of
pulse-detonation engines of next generation aircrafts [3]. It
also stands behind many disasters like explosions in rock-
ets and nuclear plants.

Spontaneous flame acceleration is the most important
stage of the DDT. Flame acceleration in channels has been
attributed qualitatively by Shelkin to wall friction and
turbulence [2]. Turbulence was a fatal obstacle for quanti-
tative understanding and predicting the DDT, since turbu-
lence and turbulent burning is a field of modern physics,
which is far from being fully understood yet despite a
century of intensive research [1,10–12]. Recent theoretical
advances and numerical simulations of the laminar DDT in
smooth channels were a step forward in understanding the
process [13–15], which demonstrated strong decrease of
the acceleration rate with the increase of the Reynolds
number. For this reason, thermal losses may stop flame
acceleration in smooth channels. To achieve powerful
flame acceleration, modern experiments use obstacles in
the channels. Optimal obstacle design was actively debated
at the last International Colloquium on Dynamics of
Explosions and Reactive Systems (ICDERS-2007,
Poitiers, France) [6–8]. Unfortunately, at present, obstacle
design employs mostly a painful ‘‘cut-and-try’’ approach
with minor theoretical understanding. It relies mostly on
the qualitative Shelkin mechanism, with the general belief
that the main role of the obstacles is only to create stronger
turbulence.

Here, we show that the mechanism of ultrafast flame
acceleration in obstructed channels has another physical
nature, which is qualitatively different from the Shelkin
explanation. We find that delayed burning between the
obstacles creates a powerful jetflow driving the accelera-
tion. The acceleration mechanism is independent of the
Reynolds number, with turbulence playing only a supple-
mentary role. The described mechanism is much closer in
physical nature to initial acceleration of ‘‘tulip’’ flames
explained by Clanet and Searby [16]. However, ‘‘tulip’’
flames accelerate only during a very short time, while the
present mechanism works until detonation is triggered. We
validate our theory by extensive numerical simulations and
comparison to previous experiments.
Similar to modern experiments [3–7], we consider a

channel of half-width R closed at one end, see Fig. 1.
The channel is partly blocked by obstacles of height �R
with free central part of half-width ð1� �ÞR. To elucidate
the physical mechanism of flame acceleration, we start
with tightly placed thin obstacles with spacing �z �
�R. In this limit, turbulence may be neglected; laminar
burning goes slowly in the pockets between the obstacles
with normal velocity Uf. Burning matter expands by the

factor � ¼ �f=�b determined by the density ratio of the

fresh and burnt gas; the expansion factor is typically � ¼
5–8. Burnt gas flows out of the pockets with the speed
juxj ¼ ð�� 1ÞUf. Coming into the free channel part, the

flow changes direction to the axial one, accumulates into a
strong jet and pushes the leading flame tip forward. Flame
sweeps extremely fast along the free channel part leaving
behind new pockets of the fresh fuel mixture. This pro-
duces a positive feedback between the flame and the flow
and leads to strong exponential acceleration of the flame
tip. At the beginning, the flame velocity is low, and the flow
may be considered incompressible, r � u ¼ 0. Taking into
account that uz ¼ 0 at the closed end z ¼ 0, we find the
velocity distribution in the free part of the channel with
jxj< ð1� �ÞR
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ðux;uzÞ ¼
ð�� 1ÞUf

ð1� �ÞR ð�x; zÞ: (1)

The flow becomes quite strong at large distances from the
tube end, z=ð1� �ÞR � 1, when a large number of pock-
ets contributes to the jet. The equation for the flame tip Zf

takes into account both the jetflow and intrinsic flame
propagation with velocity �Uf with respect to the burnt

matter

dZf

dt
¼ uzðZfÞ þ�Uf ¼ ð�� 1ÞUf

ð1� �ÞR Zf þ�Uf: (2)

Solution to Eq. (2) describes powerful flame acceleration

Zf

ð1� �ÞR ¼ �

�� 1
½expð�Uft=RÞ � 1� (3)

with the scaled acceleration rate � ¼ ð�� 1Þ=ð1� �Þ
independent of the Reynolds number. This mechanism is
much stronger than the classical Shelkin mechanism,
which becomes extremely weak in smooth tubes at large
values of the Reynolds number, see the quantitative theory
[14,15]. On the contrary, the present mechanism works
even in very wide obstructed tubes with ideally slip walls.
Acceleration becomes stronger for larger thermal expan-
sion � and larger blockage ratio �. Wall friction and

turbulence play only supplementary roles in this mecha-
nism, modifying burning between the obstacles. The de-
scribed mechanism is much closer in physical nature to the
initial acceleration of ‘‘tulip’’ flames explained by Clanet
and Searby [16]; a more detailed theory of the process was
developed recently in Ref. [17]. To see the similarity
between these two mechanisms, let us consider flame
ignition at the closed end ðx; zÞ ¼ ð0; 0Þ of the channel
with obstacles. Reproducing calculations of Ref. [17] for
the 2D channel, we obtain a finger-shaped flame front
accelerating in the free part of the channel, jxj< ð1�
�ÞR, with the tip position described by Eq. (3). Still, a
finger-shaped flame of Refs. [16,17] accelerates only dur-
ing a very short time until it touches the sidewalls of the
channel. The situation is different in channels with ob-
stacles, where pockets with fresh fuel mixture separate
the free part of the channel from the walls. Flame propa-
gation in the pockets supports the jet in the free part of the
channel and the exponential acceleration of the flame tip
until detonation is triggered. Here, we can distinguish two
phases of acceleration: a first phase where all the pockets of
trapped mixture are still burning, and a second phase where
initially ignited pockets successively burn out. In the sec-
ond phase, the acceleration slows down, but only a little, by
a factor marginally smaller than unity. During the interval
between successive extinctions in pockets at the flame
backside, many new pockets are ignited by the flame tip,
and the flame keeps accelerating. Indeed, it takes time
�t ¼ �R=Uf to burn all fuel mixture in a pocket between

the obstacles. Then, backside of the flame front Zb at time t
coincides with the tip position at the time instant t� �t,
namely, ZbðtÞ ¼ Zfðt� �tÞ. Burning happens only in the

domain Zb < z < Zf; only this domain contributes to the

jet. Replacing Zf by ZfðtÞ � Zfðt��tÞ in the right-hand

side of Eq. (2), we find the scaled acceleration rate from the
equation �ð1� �Þ ¼ ð�� 1Þ½1� expð���Þ�. For typi-
cal parameter values� ¼ 1=2,� ¼ 8, we obtain reduction
of the acceleration rate by 0.1% in comparison with Eq. (3).
Formally, we may also look for a steady solution to modi-
fied Eq. (2), Zf ¼ Uptþ Z1, whereUp is constant speed of

the tip. However, solving Eq. (2), one finds Up ¼
�Uf½1� �ð�� 1Þ=ð1� �Þ��1 < 0 for all realistic pa-

rameters of the problem � ¼ 5–8, �> 1=�. Negative
flame speed does not have a physical meaning, while tiny
plates with �< 1=� cannot be treated as obstacles. Thus,
exponential flame acceleration is the only physical solution
to the problem. When a flame speed becomes comparable
to the sound speed, cs, gas compression tends to slow down
the acceleration. Replacing r � u ¼ 0 by the complete
equation r � ð�uÞ ¼ �@�=@t < 0, we find gas compres-
sion reducing the jet velocity (1). In the case of small
though finite compression, we can evaluate reduction of

the jet velocity by the term
RZf

0 ð��1@�=@tÞdz > 0. This
effect may be detected by simulations for high enough
initial values of the Mach number.

FIG. 1 (color online). Snapshots of temperature, velocity, and
vorticity in the flow generated by an accelerating flame for � ¼
8, M ¼ 0:001, �z=R ¼ 1=4, � ¼ 2=3 (a)–(c) and � ¼ 1=2 (d)–
(f).

PRL 101, 164501 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

17 OCTOBER 2008

164501-2



We validated the analytical theory by direct numerical
simulations of the two-dimensional Navier-Stokes equa-
tions for a compressible reactive flow. The simulations are
performed in the same way as in our recent papers
[14,15,17]. The homogeneous gas mixture obeys the
ideal gas law P ¼ ð1� 1=�Þ�CPT, where CP ¼
103 m2 s�2 K�1 is the specific heat at constant pressure
and � ¼ 1:4 is the adiabatic index. Initial temperature and
pressure are Tf ¼ 300 K, Pf ¼ 105 Pa. We used the free-

slip and adiabatic boundary conditions at the walls and
obstacle surfaces. The channel half-width was R ¼ 24Lf,

where Lf ¼ �f= Pr�fUf is the so-called flame thickness,

�f ¼ 1:7 � 10�5 kg s�1m�1 is the viscosity coefficient of

fuel mixture and the Prandtl number is Pr ¼ 0:75. We took
the initial Mach number within the range ofM ¼ Uf=cs ¼
10�3 � 10�2. The lower value of the Mach number M ¼
10�3 corresponds to realistic methane and propane flames.
We model reaction rate by a single-step Arrhenius kinetics.
The scaled activation energy was E=RpTf ¼ 32, where Rp

is the ideal gas constant. The reaction rate is assumed to be
of the first order with respect to concentration of the fuel
mixture and of the first or second order with respect to
density. We took the Lewis number Le ¼ 1. We used the
expansion factors � ¼ 5, 8, three values of the blockage
ratio (� ¼ 1=3; 1=2; 2=3) and four values of spacing
between the obstacles (�z=R ¼ 1=4; 1=2; 1; 2). The
code is based on the cell-centered finite-volume method
[18]. The numerical method has proved to be both accurate
and robust for modeling of different kinds of complex
reacting flows. The code has been validated by solving
various hydrodynamic problems [18], and was utilized
successfully in simulations of laminar flames at different
conditions of burning [14,15,17].

Characteristic snapshots of the flame, the flow velocity,
and the vorticity are shown in Fig. 1. Figures 1(a)–1(c)
reproduce the theoretical limit in the best way with the
realistically small initial Mach number and tightly placed
obstacles. In agreement with the above theory, the strongly
accelerating flame front is confined in the free part of the
channel; burning in the pockets is delayed. The gas flow
shows a strong jet in the free channel part with practically
no turbulence. Figures 1(d)–1(f) show the flame front at the
stage of developed acceleration, when the front propaga-
tion speed is comparable to the sound speed. Here, the
central jet generates quite strong turbulence, which makes
the flame shape corrugated with much faster turbulent
burning in the pockets. Still, even in that case, we can
distinguish the leading central part of the flame front and
the strong jetflow. A corrugated turbulent shape of the
flame front might conceal the physical mechanism of flame
acceleration described above. Complications of turbulent
burning were, probably, the main reason why this mecha-
nism was not discovered previously. Still, this mechanism
keeps working not only qualitatively, but quantitatively
even for strongly corrugated turbulent flames. Figures 2

and 3 show the position of the flame tip versus time and the
tip velocity versus its position. We can observe the simu-
lation results with different parameters coming in groups
(shown by different colors). We compare the scaled accel-
eration rates obtained in experiments [17], theory, and
numerical simulations, denoted as �exp, �th, �num, respec-

tively. Series of markers closest to the solid line in Fig. 2
correspond to the same simulation parameters as in Fig. 1
(M ¼ 10�3, � ¼ 8). They reproduce the incompressible
limit in the best way and show very good agreement with
the theory, �num � 0:9�th; the deviation is comparable to
the common accuracy of numerical simulations [14,15,17].
Large values of the Mach number are beyond our incom-
pressible model. To explore the model limitations, we also
performed simulations with large initial values of the Mach

FIG. 2 (color online). Scaled position of the flame tip versus
scaled time. Analytical solution (3) is shown by the solid line;
numerical results are shown by markers. � ¼ 5, 8, M ¼ 0:001;
0.005; 0.01, � ¼ 1=3; 1=2; 2=3.
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FIG. 3 (color online). Scaled velocity of the flame tip versus
the scaled tip position. Solid straight line corresponds to the
analytical solution (2), markers show experimental results of
Ref. [7] and results of numerical modeling.
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number. We observe noticeably slower exponential flame
acceleration at larger values of the Mach number; the
deviation between the theory and modeling happens as
the local Mach number comes close to 1. The influence
of gas compression on flame acceleration has not been
investigated before; still, analyzing results of the previous
works for smooth tubes [13–15], we come to the same
conclusion as in the present Letter.

On the developed stage of flame acceleration, turbulence
makes burning in the pockets faster and compensates for
the influence of gas compression. As a result, the above
theory describes quite well even the acceleration of a
strongly turbulent flame. Figure 3 compares the theory
and simulations to the experiments by Johansen and
Ciccarelli [7], which are of the most recent and elaborated
ones with the experimental setup geometry in line with the
present theory and modeling. The experiments have been
performed for a stoichiometric methane-air mixture. The
flame speed in the methane-air mixture was measured in
Ref. [19]; we also take into account corrections due to
lower initial pressure of experiments [7]. Johansen and
Ciccarelli [7] used obstacles with rather large spacing,
which led to strong pulsations of the flame velocity. Our
theoretical model is laminar, and it does not reproduce
pulsations. Still, on average, the experiments, theory, and
modeling are in a good agreement. We calculate the aver-
age acceleration rate using the linear dependence
Utip=Uf ¼ �expZtip=Rþ�, and find �exp=�th � 0:98;

1.1; 1.2 for the blockage ratios � ¼ 2=3; 1=2; 1=3, respec-
tively. Similar to the experiments, we performed several
simulation runs with large spacing between the obstacles
�z=R ¼ 1; 2. Large spacing made the flame less confined,
but it also led to stronger turbulence with pulsations of the
flame velocity similar to the experiments [7]. Still, chang-
ing the spacing of the obstacles, we obtained only minor
changes in the average flame speed with the above theory
working quite well. In the simulations of Fig. 3 (circles),
we also see an early stage of the explosion ahead of the
accelerating flame. The explosion may be traced by rapid
increase of the flame velocity at Zf=Rð1� �Þ ¼ 35–45.

The explosion and detonation triggering is the final stage of
DDT, which was also observed in the simulations and
which will be presented in detail elsewhere. Thus, the
present theory and modeling explain the physical mecha-
nism of ultrafast flame acceleration observed in modern

experiments on detonation triggering. Understanding of
this physical mechanism gives the capability for better
control of the flame acceleration and DDT timing in differ-
ent applications, e.g., in pulse-detonation engines.
We thank Gaby Ciccarelli and Craig Johansen for the

experimental data of Ref. [7]. The work was supported by
the Swedish Research Foundation and by the Kempe
Foundation.
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