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Nanoparticle plasmons are attributed to quasistatic oscillations with no wave propagation due to their

subwavelength size. However, when located within a band-gap medium (even in air if the particle is small

enough), the particle interfaces act as wave mirrors, incurring small negative retardation. The latter, when

compensated by a respective (short) propagation within the particle, generates a constructive interference

based resonator. The unusual wave interference in the subwavelength regime (modal volume <0:001�3)

significantly enhances the Q factor, e.g., 50 vs 5.5 of the quasistatic limit.
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Optical cavities with extreme merits are explored inten-
sively [1,2]. In the era of nanoscience—cavities supporting
ultrasmall modal volumes are of great interest for applica-
tions such as sensing molecular-size substances [3], cou-
pling to single ‘‘atom’’ emitters for single photon sources
[4] or nanolasers [5], compact memory cells [6], enhanced
local nonlinearities [7] and more. Fundamental issues—
related to the limits of photon localization far below the
standard half-wavelength (�=2) and strong light matter
interactions are intriguing as well.

At the lower scale of photonics and plasmonics, reside
the nanometallic particles acting presumably as quasistatic
cavities or antennas and exhibiting large local field en-
hancement yet with lowQ factor [8,9] for visible and near-
IR light. Here the energy storage is attributed to the local-
ized plasma dipoles oscillations with no retardation (elec-
tromagnetic wave propagation) effects. It was recently
shown that in this limit the specific structure of the nano-
particle is not important and the Q factor is bounded (from
above) by the material properties namely Q ¼ ð!@!"

0
MÞ=ð2"00MÞ ("M ¼ "0M þ i"00M is the metal relative dielectric

constant [9] and ! is the angular frequency). For Gold
nanoparticles, even at a relatively long wavelength of
1:5 �m, the Q factor is only �5. The authors of Ref. [9]
are wondering whether retardation effects can improve the
quasistatic plasmonic cavity, especially its low Q factor.

At the larger scale, photonic and plasmonic cavities are
based on wave-retardation effects—namely on construc-
tivewave interference, where the energy is stored mainly at
the enhanced field intensity. Very high Q factors are re-
ported, but the cavity mode size is always larger than half
the wavelength (�=2). Realization of nanocavities based on
interference is facilitated by the fact that plasmon-
polaritons—mixed electromagnetic and plasma density
waves that propagate along metallic surfaces, may exhibit
significantly reduced wavelength (slow wave). By employ-
ing these slow plasmon polaritons, some nanocavities were
reported having modal volume V ¼ ð36 nmÞ3 ¼ 0:006�3

with Q ¼ 170 (calculated) for a whispering gallery mode
cavity in a plasmonic gap [10]; V ¼ ð186 nmÞ3 ¼ 0:015�3

with Q� 30 (calculated) for a plasmonic Fabry-Perot
cavity [11]; V ¼ ð86 nmÞ3 ¼ 0:006�3 with Q ¼ 10 (mea-
sured) for a loaded plasmonic Fabry-Perot [12].
The theme of this Letter is related to a possible role of

such wave propagation effects in determining the cavity
characteristics of the nanometallic particle discussed ear-
lier, although the latter’s dimensions are much smaller even
compared to a plasmon-polariton wavelength. It is of a
basic interest to comprehend why and when wave interfer-
ence may have a major importance in ultrasmall struc-
tures—where light (or polaritons) cannot accumulate
almost any phase in propagation. Furthermore the exis-
tence of such retardation effects and their influence on the
cavity characteristics may change the quantitative inter-
pretation of many phenomena based on nanoparticle cav-
ities—such as surface Raman enhancements [13],
nanoshells [7], as well as on related design rules (e.g.,
nanoplasmonic lumped circuitry [14]).
We show that such retardation effects can enhance the

particle Q factor significantly, compared with the quasi-
static value, which results in remarkable Q=V figure of
merit, namely, enabling enhanced strong light matter in-
teractions. The underlying effect is wave reflection from
‘‘band-gap mirrors’’ (to be explained later) surrounding the
particle, which exhibits small but negative phase—and
together with the short wavelength characterizing the plas-
mon polariton yields the dramatic effect.
It is easy to convey the basic physical mechanism by

examining the classical parallel plate Fabry-Perot resona-
tor—storing light energy by constructive interference of
waves, based on round-trip phase accumulation of 2�m
(m ¼ 0; 1; 2; . . . ). The overall accumulated phase stems
from the combination of light propagation and the reflec-
tion phase from the cavity mirror interfaces. In regular
cavities the two mirrors contribute either 2� “0” or 2�
“�” phase (mirrors with respective lower or higher refrac-
tive index compared to that of the cavity), thus not partic-
ipating effectively in determining the cavity resonance
condition. Consequently, constructive interference is
achieved by setting the cavity length to mð�=2Þ and the
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smallest optical cavities are �=2 long (e.g., in VCSELs,
and in moderate Q factor defect cavity). However, special
mirrors can exhibit an amplitude reflectivity with small
negative phase (��), such that the two cavity mirrors
contribute either 2ð0� �Þ ¼ �2� or 2ð�� �Þ ¼
2�� 2�. In both cases a very short propagation in the
cavity segment is enough to complement the 2�m (m ¼ 0
or 1, respectively) round trip phase, namely—just the
distance required to overcome the phase progress in the
mirrors segments (�2�). Such a negative phase delay in
reflection can be easily derived from the complex Fresnel
equation [as depicted in Fig. 1(a)], which yields the follow-
ing mathematical condition: for jnCj> jnMj (cavity
index>mirror index) the condition is nCrnMi < nMrnCi

(r and i are the real and imaginary parts, respectively) and
for jnCj< jnMj the condition is the inverse of the above.
This can be realized by using lossy media—but we seek a
solution that has a reflection coefficient magnitude of �1,
which is essential for achieving a reasonable Q factor for
such ultrashort cavities. Thus the favorable solution is
employing a lossless mirror that supports a decaying
field—namely a band-gap mirror.

As an example an air cavity is constructed between two
regular silver plated ‘‘shaving mirrors.’’ If the metal mir-
rors were perfect conductors, the minimum cavity length
for light at 1:5 �m will be �=2 ¼ 750 nm. However, the
metal (Ag—parameters taken from Palik [15]) is rather a
plasma and our wavelength is within the band gap (below
the plasma frequency) which results in an evanescent field
in the metal and a reflection phase (of the two mirrors)
2ð“�”� 0:07�Þ ¼ 2�� 0:14� [see Fig. 1(b)]. The small-
est cavity is only 52 nm long (0:07� �=2) where the wave
propagation complements the missing phase of 0:14�. The
quality factor of such a cavity is determined by the Ag
conduction losses (no radiation loss in this configuration)
and is Q� 6, according to the term [16]:

Q ¼
R ð�jHj2 þ @!ð!"0ÞjEj2ÞdvR ð@!ð!"00ÞjEj2Þdv ; (1)

where � is the wave impedance, H and E are the magnetic
and electric fields, respectively. A related example, in the
microwave regime, is addressing a specially designed
metamaterial interface, which was used to reduce a reso-
nant antenna size, employing also a negative phase [17–
19]. It should be noted that the simple Fabry-Perot device
of this section is also a first approximation to a nano-
plasmonic cavity formed between two very close-by Ag
particles (a plasmonic dimer) to be mentioned later.
The same concept is applied now to a full fledged 3D

particle plasmon. We consider a cylindrical shape nano-
metallic particle cavity. The quasistatic Q factor of such a
cylindrical cavity—with all dimensions much smaller than
half the wavelength, is determined by the complex metal
dielectric constant as in [9]. However, if we choose a
specific nanocylinder height, within this seemingly quasi-
static regime, such that the phase accumulation due to the
very short propagation along the cylinder axis will comple-
ment the reflection phases of the waves from the cylinder
bases (due to the mismatch of metal and air), we may
expect a retardation based cavity, as discussed for the 1D
case above, with potentially enhanced Q factor. It should
be emphasized that the air surrounding the particle can be
considered as a band-gap mirror since very small particles
virtually do not radiate and thus the field in the particle is
coupled mainly to decaying near field in air. We analyzed a
variation of this scheme—by embedding the nanocylinder
in a coaxial cylindrical plasmonic shielding envelope
(Fig. 2). This is done for several reasons: the structure
eliminates completely radiation losses; the structure is
more easily analyzed in closed form to elucidate the basic
mechanisms; the outer shielding is another control parame-
ter on the mode volume; such a configuration is amenable
to applications such as nanoprobing and nanofluidics.
The cavity is analyzed as a short plasmonic coaxial line

segment, coupled on both sides to a plasmonic hollow
cylindrical waveguide of the same diameter (Fig. 2). The
lowest order plasmonic mode (TM0) of the coaxial seg-
ment does not exhibit a cutoff. Therefore, for small radii

FIG. 1 (color online). The complex (normal incidence) reflec-
tion coefficient (�) showing the negative refection phase com-
pared to � in dashed brown line [for the case of inset (b)] and to
0 in dashed blue line [for the case of inset (c)]. The continuous
brown and blue lines are the reflection coefficients for perfect
electric conductor and low refractive index dielectric mirrors,
respectively. The insets are (a) Fresnel equation for plane-waves
reflection coefficient; (b) metal-air-metal based plane-waves
cavity, showing the reflection phase progress relatively to PEC
mirror, due to the plasmonic mirrors (less than � phase); (c) The
3D nanoparticle cavity and the related reflection phase progress
(less than 0 phase).
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the only propagating mode is the TM0 within the coaxial
segment (‘‘resonator’’) while all other modes including the
TM0 of the waveguide segments (‘‘mirror segments’’) are
evanescent. Here the band-gap mirrors with a negative
phase delay are realized by a modal cutoff, which is very
similar in nature to the plasma band gap of the previous
section. It should be noted that when considering the metal
losses—all modes are complex, but we keep the original
naming which is justified by the relatively small losses of
our configuration.

A rigorous solution is employing all modes of the two
plasmonic waveguide segments (coaxial line and hollow
waveguide). The azimuthal symmetry of the structure re-
sults in negligible coupling of the TM0 mode to TE and TM
modes of higher azimuthal orders. The dispersive metal
permittivity ("M) is fitted to experimental values [15]
according to the complex Drude model (a very plausible
assertion for �0 ¼ 1:5 �m) ["M ¼ �86:1� i8:16,
@!ð!"MÞ ¼ 86:6þ i16:2]. Applying transfer matrix cal-
culations based on the orthogonal eigenmodes of the reso-
nator (1) and the mirror segment (2) we obtain the
reflection coefficient by

� ¼ ½ABþI��1½AB�I��; Am;n ¼ heð2Þn jhð1Þm i
heð1Þm jhð1Þm i ;

Bn;m ¼
 heð2Þn jhð1Þm i
heð2Þn jhð2Þn i

!�
;

(2)

where e is radial E component and h is azimuthal
H component. The vectors � and � are the impinging and
reflected amplitudes of the cavity mode. The major reflec-
tion amplitude is of the propagating TM0 field reflected to
the counterpropagating TM0 field while negligible power
is carried by the higher modes (evanescent) in the coaxial
segment. Indeed—such a single mode approximation
yields quiet accurate results—as can be seen by comparing
the continuous and dashed red lines of Fig. 3(b), showing
that the main effect is due to the decaying field of the zero-
order mode in the mirror segment. For an accurate calcu-
lation of the reflection phase, virtually all modes on both of
the facet’s sides were considered, showing a good conver-
gence to the boundary conditions with less than 5 evanes-
cent modes on both sides for the diameters of interest. The
results for the shortest cavity (L0) are depicted in Fig. 3(a)

exhibiting a substantially shorter cavity than the effective
�=2, which is due to the negative phase accumulation in
the mirror. Contrary to the Fabry-Perot with plasma mir-
rors of the previous section—the mirror segment (mostly
air here) is the higher impedance segment, such that the
reflection phase is slightly below 0 [Fig. 3(b)] rather than
the below � value of the previous case. The resonance
condition is fulfilled for ðm ¼ 0Þ�=2 where the mirror
interfaces are contributing negative phase and the short
propagation complements the phase to 0.
The Q factor is calculated directly from the energy

distribution and in Fig. 4(a) we show a range of parameters
where theQ factor surpasses the quasistatic value (Qstatic �
5 is indicated by a dashed line in the figure). As the size of
the cavity is enhanced the Q factor as well as the modal
volume (V) are enhanced (modal volume is calculated
from the intensity variance and since the field negligibly
penetrates to the metal nanocylinder, the modal volume is
almost excluding the nanoparticle volume). The figure of
merit Q=V [Fig. 4(b)] exhibits very high values—in the
range of 106–108, and is enhanced monotonically as the
resonator dimensions are reduced. Figure 5 depicts a typi-
cal nanocavity modal intensity distribution at resonance
with very small volume (a ¼ 30 nm, b ¼ 90 nm, L ¼
60 nm). Even though the intensity is mostly localized

FIG. 3 (color online). Cavity characteristics as a function of
the nanoparticle radius (�0 ¼ 1:5 �m). (a) The various charac-
teristic length scales: blue (or dark gray)—shortest cavity length,
red (or gray)—effective modal dimension and black—half the
plasmonic wavelength in the resonator segment; (b) reflection
phase (’�). Dashed red line—Fresnel-like approximation using

the effective index of the lowest order mode (TM0) in all seg-
ments for b ¼ 2a. Inset: illustration of the phase accumulation
cycle.

FIG. 4 (color online). Cavity merits as a function of the nano-
particle radius (�0 ¼ 1:5 �m). (a)Q factor values. Black dashed
line: quasistatic value (�5); (b) corresponding Q=V figure of
merit. Inset: the effective modal dimension ¼ V1=3.

FIG. 2 (color online). A three-dimensional illustration, of the
particle-plasmon shielded cavity. The structure consists of an
inner nanocylindrical particle and longer (coaxial) outer shield-
ing layer, both made of plasmonic metal (gold).
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around the inner metal interface, the shield plays a signifi-
cant role in limiting the radial as well as the longitudinal
dimensions of the mode, by inducing a smaller effective
wavelength (slower plasmonic wave). This effect contrib-
utes both to a faster phase accumulation in the resonator
and closer-to-zero reflectance phase (also apparent in the
preceding figures). The resulting modal volume of this
example is strictly nanoscaled, having average effective
dimension of 75 nm (V ¼ 0:0002�3), an order of magni-
tude smaller than the effectivewavelength of the SPPmode
(�750 nm at �0 ¼ 1:5 �m). The Q factor is 30,�6-times
higher than the maximum value expected from quasi-
statics. As the transversal radii of the 3D structure (b and
a) are reduced a faster decay into the band-gap mirror is
experienced and the reflection phase is further approaching
0 [Fig. 3(b)]—resulting in shorter cavities.

The potential impact of this retardation related effect on
nanoparticle plasmons is of importance for many typical
scenarios in the field. A signature of this effect is exem-
plified by calculating (full numerical finite element) the
Q factor of a plasmonic dimer cavity (two almost touching
gold particles). The Q factor calculated under the electro-
static approximation is �6 (similar to the shape-
independent result of [9]), while the wave solution results
in �11—for a randomly selected (not wave-resonant)
interparticle spacing (Fig. 6). At the relatively lowQ factor
regime of these cavities, the wave retardation is important
not only exactly at resonant dimensions but also off reso-
nance—resulting in larger energy storage than the values
perceived today.

We have shown that ultrasmall particle-plasmon exhibits
a significant signature of propagating plasmon-polaritons,
exploiting a nearly zero but yet finite negative wave-
reflection phase on the facets. The proposed concept was
exemplified for simplified 1D structures and subsequently
studied with full fledge analysis for a realistic 3D plas-
monic cavity, exhibiting V � 10�4�3 with respectful Q
factor of 30. It is important to note that the specific nano-
cavity discussed here can be actually fabricated either
vertically or horizontally by metal and dielectric layer
deposition and subsequent nanoetching by focused ion
beams or by e-beam patterning—the resulting cylindrical

nanometallic particle will be embedded in a dielectric e.g.,
SiO2, and surrounded by metal shielding, while light can
be input or extracted via the finite length waveguide mirror
segment by tunneling. The in and out coupling should be
made smaller than the metal losses to preserve theQ factor
value. Such a cavity may be applied for a variety of strong
interactions for sensing and basic physics studies.
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FIG. 6 (color online). Field intensity of (2D) Au ("M ¼
�86:1� i8:16) dimer excited by a y-polarized plane wave.
Diameter is 20 nm, and intercenter distance is 23 nm. Q factor:
quasistatic calculations is�6 andQ factor full wave calculations
is �11.

FIG. 5 (color online). Field intensity distribution and its
cross section for a typical gold and air cavity mode: a ¼
30 nm, b ¼ 90 nm, L ¼ 60 nm, Q ¼ 30 (Qstatics ¼ 5:5), V ¼
ð75 nmÞ3, �0 ¼ 1:5 �m.
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