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The instantaneous optical Kerr effect in optical fibers is a nonlinear phenomenon that can impose limits

on the ability of fiber-optic communication systems to transport information. We present here a

conservative estimate of the ‘‘fiber channel’’ capacity in an optically routed network. We show that the

fiber capacity per unit bandwidth for a given distance significantly exceeds current record experimental

demonstrations.
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The seminal work of Shannon published in 1948 [1]
gave birth to information theory. Shannon determined the
capacity of memoryless channels, including channels im-
paired by additive white Gaussian noise (AWGN) for a
given signal-to-noise ratio (SNR). The extension of
Shannon’s theory to the ‘‘fiber channel’’ in optical core
networks faces several major difficulties. An important
challenge originates from the presence of three fundamen-
tal physical phenomena in optical fibers: noise, fiber chro-
matic dispersion, and the instantaneous Kerr nonlinearity.
In addition, in optically routed networks, optical filters
distributed in the networks route individual wavelength-
division multiplexed (WDM) channels to their intended
destination.

A few studies have considered the impact of the Kerr
nonlinearity on fiber capacity. These studies rely on em-
pirical approaches [2], approximate solutions assuming
that fiber nonlinearity is either low [3–9] or is considered
as multiplicative noise [3,4,6], are limited to specific non-
linear propagation effects [10], confined to specific binary
formats [11] or do not make use of maximally compact
modulation [12]. Finally, these approaches do not explic-
itly account for the impact of spectral confinement in
optically routed networks.

In this Letter, we address fundamental capacity limits of
the fiber channel in optically routed networks using a full
field representation and a series of advanced techniques.
We signal at near Nyquist rate [13] for maximum spectral
efficiency, use multilevel modulation, and reverse non-
linear propagation at both the transmitter and receiver,
the latter employing coherent detection. All elementary
(instantaneous) Kerr nonlinear interactions in the presence
of signal and noise are taken into account by direct nu-
merical solution of the stochastic generalized nonlinear
Schrödinger equation (GNSE) describing transmission in
fibers. The limitations we impose on capacity evaluation,
notably on the constellation, on memoryless capacity
evaluation, and on the dispersion map lead us to refer to
our calculated capacity as a conservative estimate (in the
spirit of a lower bound) for fiber capacity.

For the most part, Shannon theory [1] has been devel-
oped for linear channels that conserve the signal spectral

support, i.e., the range of spectral components in a signal.
In contrast, a nonlinear channel can, in general, create new
frequencies falling outside the spectral support of the input
signal, which makes the application of Shannon’s theory
difficult. A notable exception is a soliton [14], which is a
solution of the nonlinear Schrödinger equation (NSE)
[15,16] that preserves its spectrum upon nonlinear trans-
mission. However, solitons represent isolated single-
symbol solutions of the (noiseless) NSE while capacity
calculations need to address sending sequences of symbols
both in time and in frequency. We do not consider solitons
in this study, but they represent an interesting concept to
explore further.
Our approach to deal with the difficulties associated

with fiber nonlinearity is to place ourselves in a regime
of operation where we believe Shannon’s approach should
approximately hold. Such a regime limits spectral broad-
ening by fulfilling the condition LB � L, where LB is the
transmission length over which a non-negligible amount of
spectral components are generated beyond the signal spec-
tral support and L is the transmission path length. To keep
LB large, we operate in the regime LD � LNL, where LD is
the dispersion length and LNL is the nonlinear length [16].
The latter regime is often referred to as pseudolinear trans-
mission [17].
There are two important sources of noise resulting from

transmission over optical fibers: double Rayleigh backscat-
tering (DRB) [18] and amplified spontaneous emission
(ASE). Since for DRB the backscattered light propagates
over a significant fiber length in the backward direction
before being scattered back in the forward direction, opti-
cal isolators can be inserted along the line to suppress the
backward propagation of DRB. Note that the insertion of
isolators makes the fiber unidirectional for signal trans-
mission. From the expressions of single Rayleigh back-
scattering [18], one can easily show that, for distributed
amplification with gain compensating fiber loss, the ratio
of DRB power to signal power is / 1=N, where N is the
number of (lossless) optical isolators in the line. For suffi-
ciently large values of N, DRB is suppressed. Therefore,
DRB does not appear to be as fundamental as ASE as a
source of noise and will not be considered further.
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The evolution of the optical field Eðz; tÞ in a fiber using
distributed Raman amplification with ASE generation can
be represented by the stochastic GNSE [19],

@E

@z
þ i

2
�2

@2E

@t2
� i�jEj2E ¼ inðz; tÞ; (1)

where �2 describes the fiber chromatic dispersion, here-
after simply referred to as dispersion, which is responsible
for introducing memory in the channel. Note that the
variation of dispersion with frequency is neglected since
it is a second-order effect relative to the dispersion itself
(except for near-zero values of dispersion) and because
fiber can be engineered to have constant dispersion with
frequency [20]. To first-order in fiber nonlinearity, the
memory, in units of symbols, associated with nonlinear
propagation is �ð�2LÞmax�f=S where ð�2LÞmax is the
maximum excursion of cumulative signal dispersion in
the line, �f is the input signal bandwidth, and S is the
symbol rate. The parameter � in Eq. (1) is the instanta-
neous Kerr nonlinearity coefficient [16]. Ideal optical dis-
persion compensation (lossless and linear) and ideal
optical filtering are periodically applied to the signal every
LA km. We use reverse propagation (‘‘back propagation’’)
by setting the right-hand side of Eq. (1) to zero and
changing z to �z. All signal-signal nonlinear interactions
occurring within one WDM channel are undone by this
process. Note that the periodic insertion of perfectly rect-
angular optical filters is not included in the reverse propa-
gation since this filtering operation cannot be easily
inverted.

The term nðz; tÞ in Eq. (1) is the term describing ASE
noise generation. In Refs. [21,22], Gordon demonstrated
that ASE can be represented by a classical field that has the
statistical properties of additive Gaussian noise. The estab-
lishment of this equivalent representation allows modeling
ASE as circularly symmetric complex Gaussian noise,
fully characterized by its autocorrelation [23]

hnðz; tÞn�ðz0; t0Þi ¼ nspKTh�s��ðz� z0; t� t0Þ; (2)

where nsp is the spontaneous emission factor, �s the optical

frequency of the signal,� the fiber loss coefficient, and � is
the Dirac functional. The parameter KT ¼ 1þ �ðTÞ is the
phonon occupancy factor, where �ðTÞ ¼ 1=fexp½hð�p �
�sÞ=ðkBTÞ� � 1g [24] with kB the Boltzmann constant, T
the fiber temperature, and �p the optical frequency of the

Raman pump providing the distributed gain. The factor KT

is close to 1 (typically between 1.1 and 1.2) for Raman
amplification of fiber-optic communication systems.

We choose an ideal distributed amplification scheme, in
which the Raman gain exactly compensates for the fiber
intrinsic loss. This choice is motivated by first considering
that the delivered optical SNR (OSNR) for a signal of input
power Ps over a transmission length L (N spans of length
LA) is given by 2 expð��0LAÞPs=ðNh�BrefFÞ where �0 is
the net loss (distributed gain minus intrinsic loss) coeffi-
cient, h� is the photon energy, Bref a reference bandwidth

of 12.5 GHz, and F is the noise figure of distributed

amplification. The nonlinear phase is given by �NLðLÞ ¼
N
RLA

0 �PsðzÞdz [16]. One can show [25] that the maximum

value of OSNR at constant�NL (and F) occurs when �
0 ¼

0, i.e., when the distributed gain exactly compensates fiber
loss. Experimental demonstrations of nearly ideal distrib-
uted gain can be found in Refs. [26,27]. In systems where
Raman gain continuously compensates fiber loss, the spec-
tral density NASE of the noise per polarization at a fre-
quency � is given by h�KT�L. The OSNR at the end of
such a line is given by OSNR ¼ Ps=ð2NASEBrefÞ where Ps

is the signal power of the WDM channel of interest. For
signals using a single state of polarization, the SNR and
OSNR are simply related by SNR ¼ ð2Bref=SÞ OSNR. We
assume that the parameters �2, �, nsp, �s, �p, and � are

known at both the transmitter and receiver.
We treat the channel as a memoryless channel [1,28,29],

in part motivated by the removal of the memory associated
with signal-signal intrachannel nonlinearities from the im-
plemented noiseless and filterless reverse propagation.
Two additional reasons for using a memoryless channel
are that we are thereby lower-bounding the capacity of the
channel with memory, and that computations simplify.
More precisely, one can show that the channel capacity
with memory is lower-bounded by the capacity C for a
memoryless channel with input-output conditional proba-
bility pYjXðyjxÞ and input distribution pXðxÞ, which is given
by

C=B ¼
ZZ

pX;Yðx; yÞlog2 pYjXðyjxÞR
pX;Yðz; yÞdz dydx; (3)

whereB is the bandwidth of the frequency band assigned to
each WDM channel and pX;Yðx; yÞ ¼ pXðxÞpYjXðyjxÞ. It is
well known from Shannon’s work that the optimum proba-
bility density (PDF) pXðxÞ of a band-limited channel with
AWGN and input constrained to power Ps is Gaussian
distributed of the form [1,28,29],

pXðxÞ ¼ 1

�Ps

e�ðx2Rþx2I Þ=Ps ; (4)

where xR and xI are the real and imaginary parts (or cosine
and sine components) of the input x. The suboptimal
alphabet that we use approximates Eq. (4) by using an
alphabet based on concentric rings. We choose the rings
equally spaced in optical field amplitude and with equal
frequencies of occupation for each ring. The ring ampli-
tudes and occupation frequencies could both still be opti-
mized to better approximate Eq. (4) but, as we shall see
later, our constellation choice already gives capacities very
close to the Shannon limit for the AWGN channel. We
constrain ourselves to this choice of constellation for the
nonlinear capacity estimation.
The capacity evaluation can be performed by consider-

ing only the angle of rotation relative to its input modula-
tion angle for each constellation point. This is equivalent to
backrotating each constellation point by its input modula-
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tion angle. The noisy and nonlinearly distorted clouds are
fitted for each ring to bivariate Gaussian PDFs whose
covariance matrices capture cloud noncircularity. From
these PDFs and Eq. (3), one can calculate capacity esti-
mates. We also explored fitting non-Gaussian PDF shapes,
both with and without circular symmetry. These PDFs led
to very marginally different capacities than obtained for the
bivariate Gaussian PDFs.

Each symbol modulates a near Nyquist (‘‘sinc’’) pulse in
the time domain [13], which limits the signal support to a
bandwidth equal to the symbol rate S. This is shown in
Fig. 1(a) which gives an example of a signal on a 2-ring
constellation shown in Fig. 1(b) with 32 symbols. The
corresponding field amplitude waveform is shown in
Fig. 1(c).

The capacity of the constrained ring constellations in the
absence of fiber nonlinearity is shown by the set of curves
enclosed by the ellipse on the upper part of Fig. 2. Shan-
non’s limit, given by C=S ¼ log2ð1þ SNRÞ bits=symbol,
is also shown as a reference. The symbol rate S is
100 Gbaud and the channel bandwidth B is 102 GHz, the
latter incorporating the 2-GHz guard band. Optical routing
is performed by placing rectangular optical filters of 102-
GHz bandwidth at the end of each span. We have also
studied bandwidths of 100 and 101 GHz and obtained
virtually identical results. Rectangular filters are used be-
cause they approximately match the signal spectrum even
after propagation and because they are infinitely cascad-
able. At a given SNR in the range of interest, there is a
sufficient number of rings that allows us to very closely
approach the Shannon limit. For this number of rings, the
uniformly spaced ring constellation with uniform occu-

pancy is virtually optimal. We now calculate a fiber ca-
pacity estimate for optically routed networks. We con-
sider a link of 2000 km (20 spans of 100 km) of standard
single-mode fiber having �2 ¼ �21:67 ps2 km�1, � ¼
1:27 ðWkmÞ�1, and a loss of 0:2 dB=km. The wavelengths
of the signal and Raman pump, �s and �p, are set to 1550

and 1450 nm, respectively. Constellations with 1, 2, 4, 8,
and 16 rings are shown. A dispersion map with optimum
precompensation [30] and optimum residual dispersion per
span for transmission in the absence of nonlinearity com-
pensation at the transmitter or receiver is used. The cumu-
lative dispersion is brought back to zero before entering the
coherent receiver. We modeled transmission with a large
number of WDM channels and found that five WDM
channels were sufficient to capture all WDM nonlinear
effects. The 2048 constellation points are randomly chosen
on the ring constellation structure. The large computation
time prevented the use of larger numbers of points but
repeated trials with different noise and data realizations
led to variations in capacity estimates of a few tenths of
bits=s=Hz. Reverse propagation applied at both the trans-
mitter and receiver in variable ratios also produced ca-
pacity estimates within an accuracy estimated to be a few
tenths of bits=s=Hz.
The fiber channel capacity per unit bandwidth for the

nonlinear system studied is displayed by the curves with
symbols in Fig. 2. For each number of rings, the capacity
increases following the linear capacity curves at low SNR,
until it saturates around an SNR of �20 dB. This satura-
tion is caused by nonlinear distortions originating mainly
from interchannel fiber nonlinearities that increase the
clouds’ sizes associated to each ring as seen in Fig. 3.
Further power increase results in a decrease in capacity.
For our system, LD � ðS2j�2jÞ�1 ¼ 4:61 km and, for a
SNR of 20 dB, LNL ¼ ð�PaveÞ�1 ¼ 5890 km that corre-
sponds to LNL � 1000LD so that we are well within the
pseudolinear transmission regime. The signal does not
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FIG. 1 (color online). Example of a modulated optical field
used in this study: (a) Spectrum; (b) symbol realization and
constellation; and (c) sampling instants of the corresponding
analog waveform. The average power is 1 mW.
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FIG. 2 (color online). Information rate and fiber channel ca-
pacity for ring constellations. Right axis: information rate in the
absence of fiber nonlinearity; Left axis: fiber capacity when
taking into account fiber nonlinearity for a 2000-km system
described in the text. A maximum of �5:6 bits=s=Hz per polar-
ization state is obtained for 16 rings.
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broaden significantly to interfere with neighboring WDM
channels despite the tight channel packing. The maximum
capacity increases with the number of rings and reaches
�5:6 bits=s=Hz for 16 rings. The multiple-ring and one-
ring curves cross at high SNR (beyond SNRs of highest
capacities) in Fig. 2 because we have not optimized the
ring occupation frequencies and ring amplitudes. The
maximum spectral efficiency in Fig. 2 exceeds by a factor
�3 in spectral efficiency per polarization the current high-
capacity record experiment [31] established over a much
shorter distance, suggesting that advanced technologies
can be highly beneficial to increase fiber capacity.
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FIG. 3 (color online). Backrotated constellations after trans-
mission: (a) without ASE (noise) and fiber nonlinearity. Graphs
(b), (c), and (d) are with noise and fiber nonlinearity for different
SNR. Note that nonlinear distortions tend to spread the constel-
lation points along the modulation circle they belong to.
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