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A new theory describing the interaction between atoms and a conductor with small densities of current

carriers is presented. The theory takes into account the penetration of the static component of the

thermally fluctuating field in the conductor and generalizes the Lifshitz theory in the presence of a spatial

dispersion. The equation obtained for the force describes the continuous crossover between the Lifshitz

results for dielectrics and metals.
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Introduction.—The forces acting on atoms near the sur-
face of a dielectric body were calculated at arbitrary dis-
tances and temperatures by Lifshitz [1]. The Lifshitz
theory is based on the calculation of the stress tensor for
fluctuations of the electromagnetic field between two
bodies. This tensor can be expressed in terms of the com-
plex dielectric permittivities of the bodies at imaginary
values of frequency !. The general equation for atom-
surface forces was obtained as a limiting case of the
interaction between a dielectric body 1 with dielectric
permittivity "ð!Þ and a body 2, in the limit when the
second body is considered dilute from the electrodynamic
point of view, i.e., assuming that dielectric function of the
second body "2ð!Þ � 1 and expanding with respect to
"2 � 1. In general, both zero-point and thermal fluctua-
tions contribute to the force. In this letter we will discuss
only the situation when the main contribution is due to the
thermal fluctuations, as it occurs at high enough tempera-
ture and large distance l between the atom and surface of
the body.

It was discovered by Lifshitz, that under the condition

l � �T � @c=ðkBTÞ; (1)

the interaction energy decreases according to the 1=l3 law:

VðlÞ ¼ � kBT

4l3
�ð0Þ"ð0Þ � 1

"ð0Þ þ 1
; (2)

where �ð0Þ and "ð0Þ are, correspondingly, the static values
of the electric polarizability of an atom and the dielectric
permittivity of the body.

This simple Eq. (2), however, exhibits peculiar proper-
ties when applied to a conductor. Electrodynamic proper-
ties of a conductor at low frequencies can be described by a
universal equation for the complex dielectric permittivity:

"ð!Þ ¼ i
4��

!
þ �"; (3)

where � is the dc conductivity and �" is the ‘‘bare’’ dielec-
tric constant, which does not take into account the contri-
bution from current carriers. Because "ð!Þ from (3) tends

to infinity as ! ! 0 for any value of �, the potential tends
to the universal limit

VðlÞ ¼ � kBT

4l3
�ð0Þ; (4)

which does not depend on �" for an arbitrarily small con-
ductivity—a seeming contradiction to common sense.
However, the universality of (4) has a simple physical
meaning. It expresses the fact that the static electric field
does not penetrate into any conductor. Still, this statement,
accepted in macroscopic electrodynamics, is only an ap-
proximate one. Actually, the field penetrates into conduc-
tors to a depth on the order of the well-known Debye radius
RD. For good conductors it typically is of the order of
interatomic distances. However, if the density of current
carriers in the conductor is small, RD can be large. We will
see below that (4) is valid only at the condition RD � l.
(The problem of the temperature dependence of the forces
is a subject of active discussion. See [2,3] and references
therein.)
Atom-surface interaction.—As a first step we will derive

the Lifshitz expression for the atom-surface interaction
directly from the Matsubara Green’s function formalism
of [4] (see also [5]). The basis of this theory is the equation
for the variation �F of the free energy for a small change of
the dielectric permittivity �":

�F ¼ kBT

4�@

X10

s¼0

Z
DE

jjð�s; r; rÞ�"ðij�sj; rÞd3x; (5)

where DE
jk is the Matsubara Green’s function of the elec-

tric field, �s ¼ 2s�kBT=@ and the prime sign means that
the s ¼ 0 term is taken with the coefficient 1=2. Notice
now, that the presence of an atom at the point ra can be
considered as a small change of the dielectric permittivity

�"ð!; rÞ ¼ 4��ð!Þ�ðr� raÞ: (6)

Substitution of (6) into (5) gives the final expression for the
energy of the atom-surface interaction
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VðlÞ ¼ kBT

@

X10

s¼0

�ðij�sjÞ½DE
jjð�s; r; r0Þ�r!r0!ra ; (7)

where DE
ikð�s; r; r0Þ is the Green’s function for a dielectric

half-space. (The interaction can be analogously expressed
in terms of the real-frequencies Green’s functions, see [6].)
It should be noted that (7) is an exact equation, if one
neglects dimensions of the atom in comparison with l. The
problem is to calculate DE

ik in a proper approximation, in

our case taking into account the spatial dispersion of the
dielectric. The function DE

ik satisfies the equation�
@i@j��ij�þ�2s

c2
"ðij�sj;rÞ�ij

�
DE

jk¼4�@
�2s
c2

�ik�ðr�r0Þ:
(8)

In media with spatial dispersion, which will be considered
below, "ðij�sj; rÞ must be understood as a linear operator
acting on the variable r. Equation (7) allows one to obtain
the general Lifshitz result for the atom-surface interaction
in a much more direct way than in the original Lifshitz
paper because it is much easier to solve (8) for a half-space
than for the two-body geometry of [1]. We will see that by
using (7) one can obtain the limiting equation (2) in a very
simple way. The point is that relativistic retardation effects
are not important under conditions (1). Indeed, the general
condition of neglecting retardation, i.e., the condition of
the quasistationarity of the field, is ! � c=l. At the
‘‘Lifshitz distances’’ (1) only the s ¼ 0 term in (7) is
important. The problem then becomes purely static and
one may calculate the Green’s function, neglecting relativ-
istic retardation effects. This problem will be solved in the
next section. Notice that the above-mentioned peculiarity
of the small � limit exists only for the s ¼ 0 term.

Longitudinal Green’s function.—As a first step we will
separate the Green’s function into its longitudinal and
transverse parts, i.e., will present it in the form

D E
ik ¼ DEL

ik þDET
ik ; (9)

where

ðcurlÞijDEL
jk ¼ 0 and @iDET

ik ¼ 0: (10)

The central point of the derivation is the statement that
the smallness of retarding effects implies the inequality
jDET

ik j � jDEL
ik j. This means that only fluctuations of

electrostatic nature are important. Indeed, a simple
estimate from (8) gives DET � "ðl�s=cÞ2DEL � DEL at
small enough �s. Particularly, the leading s ¼ 0 term in (7)
is defined only by the longitudinal function DEL

ik ð�s; r; r0Þ.
To obtain an equation for the longitudinal part, let us

apply the operator @i to both sides of (8). Neglecting the
term of the order of �2sDET , we find

@i½"DEL
ik � ¼ �4�@@0k�ðr�r0Þ: (11)

The first Eq. (10) can be satisfied identically if we intro-

duce a scalar function ’ according to

D E
ik � DEL

ik ¼ @@i@
0
k’: (12)

(Such a function was used previously in [7].) Substitution
of (12) into (11) gives the equation for ’

@i½"@i’� ¼ �4��ðr� r0Þ: (13)

This is the equation for the potential of a unit charge placed
at point r0.
We can now express the interaction between an atom and

body in the terms of the function ’:

VðlÞ ¼ kBT

2
�ð0Þ½@i@0i’ð0; r; r0Þ�r!r0!ra : (14)

This equation is valid for any body. Therefore it describes
all effects of the body size and shape. The function ’ must
satisfy usual electrostatic boundary conditions on the sur-
face of the body. Then the boundary conditions for DE

ik

will be also satisfied. If an atom interacts with a dielectric
body, which occupies the half-space z < 0, the boundary
conditions are

’z!�0 ¼ ’z!þ0; "ð0Þð@z’Þz!�0 ¼ ð@z’Þz!þ0:

(15)

The electrostatic problem is solved in Problem 1 of
section 7, [8]. The solution is:

’ ¼ 1

jr� r0j �
"� 1

"þ 1
½ðzþ z0Þ2 þ ðx� x0Þ2��1=2 (16)

where r ¼ fz;xg.
The first term in (16) does not depend on the presence of

the dielectric and must be omitted. Differentiating the
second term, which is actually the potential of the charge
‘‘image’’, and going to the limit x ! x0, z ! z0 ! l, we
find after simple calculations

D EL
ii ð0; r; rÞ ¼ @@i@

0
i’ðr; r0Þ ¼ �@

"ð0Þ � 1

"ð0Þ þ 1

1

2l3
: (17)

Equation (2) follows immediately after substitution of (17)
into (14).
Notice that the results which we discussed are valid only

in the state of full thermodynamic equilibrium. In particu-
lar, (14) is valid only if the temperature of the body is equal
to the temperature of the blackbody radiation that falls on
the body from the z > 0 half-space. If the temperatures are
different, the interaction energy decays as l ! 1 accord-
ing to the 1=l2 law (see [9]).
Bad conductors.—The calculation of the contribution of

free carriers in the longitudinal Green’s function demands
a microscopic approach. We will assume that the gas of
carriers is not degenerate; i.e., it obeys the Boltzmann
statistics and, for simplicity, that the carriers have unit
charges �e (e is the elementary charge). Then the pertur-
bation of the density of, for example, the positive
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carriers produced by the static potential ’ is �nðþÞ ¼
nðþÞðe�e’=kBT � 1Þ � �ðnðþÞe’Þ=ðkBTÞ. Adding the cor-
responding charge density into (13) gives, for z < 0, z0 >
0, the following equation for ’:

½�� �2�’ ¼ 0 where �2 ¼ 4�e2n

�"kBT
(18)

(compare section 78, [10]). Here n ¼ nð�Þ þ nðþÞ is the
total density of current carriers and �" is the bare dielectric
constant, without contributions from the carriers. Note that
� ¼ 1=RD, where RD is the Debye radius. The Debye
radius in good metals is of the order of interatomic dis-
tances. However, in ‘‘bad’’ conductors, where the number
of carriers is small, it can be comparable with the distance
between the atom and surface. Equation (18) describes the
screening of the electric field by the free carriers in the
conductor. Indeed, according to this equation, the potential
around a unit point charge in a uniform medium is
e��r= �"r. Notice that this equation can be interpreted in
terms of spatial dispersion by introducing the longitudinal
dielectric permittivity, which depends on the wave vector:
"LðkÞ ¼ �"½1þ 1=ðkRDÞ2�.

Notice that in several papers (see, for example, a recent
preprint [11]) it was claimed, with a reference on [12], that
a Lifshitz-like theory of interaction due to electromagnetic
fluctuations is not valid in presence of the spatial disper-
sion. This statement is a clear misunderstanding. Indeed,
forces acting between any bodies separated by vacuum can
be calculated by averaging of the vacuum Maxwell stress
tensor. Corresponding quadratic combinations of the field
strengths can in turn be expressed in terms of the retarded
Green’s function of the field using the exact fluctuation-
dissipation theorem (see [5]). This Green’s function, of
course, must be calculated taking into account the spatial
dispersion in the bodies, when it is important. The con-
fusion related to [12] arose because its authors did not
separate the problem of interaction in vacuum from a
more general problem of interaction of bodies embedded
in a dielectric liquid. The spatial dispersion in the liquid
results in difficulties indeed.

Accounting for the spatial dispersion is a difficult prob-
lem for restricted bodies. (See, for example [13] and a
review [14], and references therein. In these papers the
effects of the spatial dispersion on interaction between
conducting bodies are discussed.) It can be solved in our
static case due to the local connection between the electro-
static potential and the carrier density.

Thus the function ’ satisfies (13) at z > 0 and (18) at
z < 0. On the boundary z ¼ 0 we have now the ‘‘micro-
scopic’’ boundary conditions

’z!�0 ¼ ’z!þ0; �"ð@z’Þz!�0 ¼ ð@z’Þz!þ0: (19)

We assumed that both RD and l are large in comparison
with interatomic distances so the boundary can be consid-
ered as a sharp one. To solve the equation, let us expand

’ðx; z; z0Þ into a Fourier integral with respect to x:

’kðz; z0Þ ¼
Z

’ðx; z; z0Þe�ik	xd2x: (20)

Let us consider first the z > 0 domain. The Fourier
transform of Eq. (13) is

½@2z � k2�’k ¼ �4��ðz� z0Þ: (21)

The presence of the �-function means that ’k at z ! z0
must have the singularity of the type 2�jz� z0j. One easily
finds the solution:

’k ¼ �2�
e�kjz�z0j

k
þ Ae�kz; (22)

where Aðz0Þ is defined by the boundary conditions.
In the domain z0 > 0, z < 0 the equation for ’k can be

obtained by the Fourier transform of (18):

½@2z � q2�’k ¼ 0; q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �2

p
: (23)

The solution is ’k ¼ Beqz. Substitution of the boundary
conditions (19) gives the equations for A and B:

B ¼ �2�e�kz0=kþ A �"qB ¼ �2�e�kz0 � kA:

(24)

This gives

Aðz0Þ ¼ 2�

k

�"q� k

�"qþ k
e�kz0 : (25)

We can omit now the ‘‘free space’’ first term in (22) and
write the function ’k as

’kðz; z0Þ ¼ 2�

k

�"q� k

�"qþ k
e�kðzþz0Þ: (26)

Notice that ’k depends on z, z0 only in the combination
zþ z0. This means that @l@

0
l’ ¼ ½@2z � @2x�’, or for the

Fourier components ½@l@0l’�k ¼ �2k2’k. We can put

now z ¼ z0 ¼ l, x ¼ x0. Finally, the potential of interac-
tion (14) can be written as

VðlÞ ¼ �kBT�ð0Þ
Z 1

0

�"q� k

�"qþ k
e�2klk2dk: (27)

If � � l�1, which corresponds to the case of a ‘‘very
bad’’ conductor, q ! k and we recover the result (2) for an
ideal dielectric, changing only "ð0Þ ! �". In the opposite
limit � � l�1 (27) is reduced to the ‘‘good’’ metal result
(4). Equation (27) can be written as

VðlÞ ¼ � kBT

4l3
�ð0ÞF0ð�Þ; (28)

where � ¼ �l ¼ ðl=RDÞ and F0ð�Þ is defined as

F0ð�Þ ¼ 1

2

Z 1

0

�"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ t2

p �t

�"
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ t2

p þt
e�tt2dt: (29)
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From an experimental point of view the more interesting
quantities are the force acting an atom �@zV and its
derivative. They can be presented as

�@lV¼�3kBT

4l4
�ð0ÞF1ð�Þ; @2l V¼�3kBT

l5
�ð0ÞF2ð�Þ:

(30)

One can easily find expressions for these functions by
differentiating Eq. (26). According to the definition these
functions Fi ! 1 for � ! 1 and Fi ! ð �"� 1Þ=ð �"þ 1Þ
for � ! 0. Functions Fið�Þ are presented in Fig. 1 for �" ¼
3:81 (fused silica). One can notice the relatively slow
convergence to the metal value at large l.

Unfortunately the density of carriers in dielectrics de-
pends very much on the technology of preparation of the
samples and was not investigated systematically. For ex-
ample, in [15] values of n in the interval between 108 and
1015 cm�3 were used for fused silica. Then RD is in the
interval 2:3
 102 � 7:4
 10�2 	m. Properties of the vit-
reous silica used in the experiments [16,17] are reviewed in
an article [18]. This medium is an ionic conductor, the
main carriers are ions Naþ. The density of Na impurities is
about nNa ¼ 3
 1015 cm�3; however, it is difficult to
estimate the number of ions which are effective in mobility
and screening. This is a challenging problem of the theory
of such glasslike media. It is not presently clear if the
presence of carriers has any influence on the interpretation
of the results of the measurements [16,17]. (This question
was discussed in [19].) Notice that the relaxation time of
the charge distribution is very long in bodies with small �.
This time can be calculated as 
c ¼ �"=ð4��Þ. At room
temperature the resistivity � ¼ 1=�� 1019 ohm 	 cm ¼
1:1
 107 s (see [20]). This gives 
c � 3:3
 106 s ¼
917 h. It is not clear if the fields with the very low fre-
quencies of the order of !c � 1=
c are in the thermody-

namic equilibrium with the bodies. The problem is worth
experimental investigation. I believe, that at a such slow
relaxation, the carriers mobility can hardly be important in
any experiments.
In conclusion, a theory for the interaction between an

atom and a conductor due to the thermal fluctuations is
developed. The theory takes into account the partial pene-
tration of static electric fluctuations into the conductor and
is based on the Green’s function technique in the presence
of a spatial dispersion. A continuous crossover between an
ideal dielectric and a good metal is investigated.
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FIG. 1 (color online). Effect of the field penetration in a silica
sample on the atom-surface interaction. Functions F0ð�Þ—solid
line, F1ð�Þ—dashed line and F2ð�Þ—dotted line.
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