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I report on a numerical program, which can be used to calculate any infrared safe three-jet observable in

electron-positron annihilation to next-to-next-to-leading order in the strong coupling constant �s. The

results are compared to a recent calculation by another group. Numerical differences in three color factors

are discussed and explained.
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Introduction.—Jet observables and event shapes in
electron-positron annihilation can be used to extract the
value of the strong coupling constant �s [1–3]. This ap-
plies, in particular, to three-jet observables, where the
leading-order parton process is proportional to �s. In order
to extract the numerical value from the LEP data, precise
theoretical calculations are necessary, calling for a next-to-
next-to-leading order (NNLO) calculation. Because of the
large variety of interesting jet observables it is desirable not
to perform this calculation for a specific observable, but to
set up a computer program, which yields predictions for
any infrared safe observable relevant to the process
eþe� ! 3 jets. Such a task requires the calculation of
the relevant amplitudes up to two loops, a method for the
cancellation of infrared divergences and stable and effi-
cient Monte Carlo techniques. For the process eþe� ! 2
jets this was done in [4–7]. In this Letter I report on a
NNLO calculation for three-jet observables in electron-
positron annihilation. Recently, another group published
results for the NNLO corrections for three-jet observables
[8–11]. In the calculation presented here the methods used
are in many parts similar to the ones used in [8–11], al-
though I will show that at certain points there are important
differences. The authors of [8–11] made major contribu-
tions to the development of these methods [5,12–15].

The numerical results of the two calculations are com-
pared. The comparison is facilitated by splitting the NNLO
correction term into individually gauge-invariant contribu-
tions, such that each contribution is proportional to a
specific color factor. For the NNLO corrections to eþe� !
3 jets there are six different color factors. In three color
factors the two calculations agree (N�2

c , Nf=Nc, N
2
f). They

disagree in the remaining three color factors (N2
c , N0

c ,
NfNc,). The numerical differences in these color factors

can be traced back to an incomplete cancellation of soft-
gluon singularities in the calculation of Refs. [8–11]. These
singularities require additional subtraction terms, which
are subtracted from the five-parton configuration and
added to the four-parton configuration. These subtraction
terms have a structure not present in [10] and are related to
soft gluons. These terms occur generically in any NNLO
calculation with three or more hard-colored partons.

General setup.—The perturbative expansion of any
infrared-safe observable for the process eþe� ! 3 jets
can be written up to NNLO as

O ¼ �s

2�
AO þ

�
�s

2�

�
2
BO þ

�
�s

2�

�
3
CO: (1)

AO gives the LO result, BO the NLO correction and CO the
NNLO correction. The coefficient CO can be decomposed
into color pieces

CO ¼ 1

8
ðN2

c � 1Þ
�
N2

cC
lc
O þ Csc

O þ 1

N2
c

Cssc
O þ NfNcC

nf
O

þ Nf

Nc

Cnfsc
O þ N2

fC
nfnf
O

�
; (2)

where Nc denotes the number of colors and Nf the number

of light quark flavours. In addition, there are singlet con-
tributions, which arise from interference terms of ampli-
tudes, where the electroweak boson couples to two
different fermion lines. These singlet contributions are
expected to be numerically small [16–18] and neglected
in the present calculation.
The computation of the NNLO coefficient CO requires

the knowledge of the amplitudes for the three-parton final
state eþe� ! �qqg up to two loops [18,19], the amplitudes
of the four-parton final states eþe� ! �qqgg and eþe� !
�qq �qq up to one-loop [20–23] and the five-parton final
states eþe� ! �qqggg and eþe� ! �qq �qqg at tree level
[24,25]. Taken separately, the three-, four-, and five-parton
contributions are all individually infrared divergent. Only
the sum of them is finite. However, the individual contri-
butions live on different phase spaces, which prevents a
naive Monte Carlo approach. To render the individual con-
tributions finite, several options for the cancellation of
infrared divergences have been discussed, like phase space
slicing [26], sector decomposition [27,28], a method based
on the optical theorem [29] or the subtraction method
[5,12–15,30–41]. In the present calculation I use the sub-
traction method with antenna subtraction terms [15].
Cancellation of divergences.—To render the individual

three-, four-, and five-parton contributions finite, one adds
and subtracts suitable chosen terms. Schematically, we
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have

5 partons: d�ð0Þ
5 � d�NLO � d�NNLO þ d�iterated

� d�almost � d�soft;

4 partons: d�ð1Þ
4 þ d�NLO � d�loop � d�iterated

� d�product þ d�almost þ d�soft;

3 partons: d�ð2Þ
3 þ d�NNLO þ d�loop þ d�product:

Here, d�ð0Þ
5 , d�ð1Þ

4 , and d�ð2Þ
3 are the contributions from the

original amplitudes with five, four or three final state
partons. d�NLO is the NLO subtraction term for four-jet
observables, containing only three-parton tree-level an-
tenna functions. At NNLO there are several new subtrac-
tion terms required, each of them with a specific structure.
The term d�NNLO contains the four-parton tree-level an-
tenna functions. The term d�loop contains three-parton
one-loop antenna functions together with tree-level matrix
elements and three-parton tree-level antenna functions to-
gether with one-loop matrix elements. The remaining
terms d�iterated, d�almost, d�product, and d�soft all contain
a product of two three-parton tree-level antenna functions.
In d�iterated and d�almost one antenna function has five-
parton kinematics, while the other antenna has four-parton
kinematics. The former subtraction term is an approxima-

tion to d�NLO, while the latter approximates d�ð0Þ
5 in al-

most color-correlated double unresolved configurations. In
d�product both antennas have four-parton kinematics. The
term d�soft will be discussed below and is relevant only for
the color factors N2

c , N
0
c , and NfNc.

The subtraction terms without d�soft correspond to the
subtraction scheme of Ref. [10]. For any subtraction
scheme it is required, that in the three-parton channel the
explicit divergences cancel, that the four-parton channel is
integrable over a single unresolved phase space and in
addition that the explicit divergences cancel and finally
that in the five-parton channel the integrand is integrable
over single and double unresolved phase space regions. It
is easily checked that with the subtraction terms of
Ref. [10] the explicit divergences in the three-parton cancel
and I will focus in the following on the four- and five-
parton channels.

In the four-parton channel the combination d�ð1Þ
4 þ

d�NLO is free of explicit poles. It has been noted in
Ref. [10] that the combination d�loop þ d�iterated þ
d�product � d�almost involves in the color factors N2

c and
N0

c poles of the form

jAð0Þ
3 ð10; 20; jÞj2X0

3ð1; i; 2Þ
1

"

�
ln
s10jsj20

s1020
� ln

s1jsj2
s12

�
;

where p10 and p20 are the momenta obtained from p1, pi

and p2 through a 3 ! 2 phase space map. Að0Þ
3 is the

three-parton tree-level amplitude and X0
3ð1; i; 2Þ a three-

parton tree-level antenna function. In Ref. [10] it was

claimed that these poles vanish after the azimuthal inte-
gration over the unresolved phase space. This claim is
wrong. In the center-of-mass frame of p10 þ p20 with p10

and p1 along the positive z axis, the relevant integral is

I ¼ 1

2�

Z 2�

0
d� ln

� ð1þ cjÞð1� c2Þ
2ð1� c2cj � s2sj cos�Þ

�
; (3)
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FIG. 1 (color online). Dependence of the five-parton contribu-
tion on the slicing parameter ymin for the Durham jet cross
section with ycut ¼ 0:01 in the color factors N2

c , N
0
c and NfNc.

‘‘Standard’’ denotes the combination d�ð0Þ
5 � d�NLO �

d�NNLO þ d�iterated � d�almost, ‘‘soft’’ the contribution from
d�soft. In addition the sum of the two terms is shown. For small
values of ymin the sum is independent of ymin.
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where for x ¼ 2, j we set cx ¼ cos�x, sx ¼ sin�x and �2
and �j are the polar angles of partons 2 and j in the chosen

frame. The integral equals

I ¼ ln

�
1� c2cj þ ðcj � c2Þ
1� c2cj þ jcj � c2j

�
: (4)

The integral is zero for �j < �2 but nonzero for �j > �2. In

Ref. [10] it was claimed that the integral vanishes in both
cases. As a consequence of the nonzero value for �j > �2
the explicit poles do not cancel in the combination
d�loop þ d�iterated þ d�product � d�almost. The same situ-
ation occurs also in the color factor NfNc.

These poles have a counterpart in the five-parton chan-
nel. Setting d�soft to zero and using a slicing approach, one
observes in the color factors N2

c , N
0
c , and NfNc a logarith-

mic dependence on the slicing parameter ymin ¼ smin=Q
2.

This is shown in Fig. 1.
These singularities require an additional subtraction

term and that is where the present calculation differs
from the one of Refs. [8–11]. d�soft is a subtraction term
related to soft gluons which ensures that the poles in the
four-parton configuration vanish after integration over the
azimuthal angle and which renders the five-parton configu-
ration independent of ymin. The term d�soft for the four-
parton configuration can be taken of the form

jAð0Þ
3 ð10; 20; jÞj2X0

3ð1; i; 2Þ�
�
2p1pj

2p1i2pj

� 2p1p2

2p1i2p2

�

� ½S0
3ðs1jÞ � S0

3ðs12Þ � S0
3ðs2̂jÞ þ S0

3ðs2̂2Þ�; (5)

where S0
3 is the integrated soft antenna function and p2̂ is

given by

p2̂ ¼ p2 þ pi � s2i
s12 þ s1i

p1: (6)

I also used the shorthand notation p1i2 ¼ p1 þ pi þ p2.
The �-function enforces �j > �2 in the specific frame

introduced above. d�soft for the five-parton configuration
is obtained by lifting Eq. (5) to the five-parton phase space.
Figure 1 shows that the sum of all contributions in the five-
parton channel is now independent of ymin. I have checked
that in the four-parton channel the explicit poles cancel
after integration over the unresolved phase space.
Numerical results.—The numerical program is built on

an existing NLO program for eþe� ! 4 jets [42]. I con-
sider the three-jet cross section, where the jets are defined
by the Durham jet algorithm [43]. The recombination
prescription is given by the E scheme. I take the center-

of-mass energy to be
ffiffiffiffiffiffi
Q2

p ¼ mZ. The three-jet cross sec-
tion is expanded as

�3-jet ¼ �0

�
�s

2�
A3-jet þ

�
�s

2�

�
2
B3-jet þ

�
�s

2�

�
3
C3-jet

�
;

where�0 is the LO cross section for eþe� ! hadrons. The
coefficients A3-jet, B3-jet and C3-jet are given for the renor-

malization scale �2 ¼ Q2 and various values of the jet
defining parameter ycut in Table I. The errors of C3-jet are

from the Monte Carlo integration. For selected values of
ycut the contribution from the individual color factors to the
NNLO coefficientC3-jet is shown in Table II. Finally, Fig. 2

shows the scale variation of the jet rate defined by

�3-jet

�tot
¼ �s

2�
�A3-jet þ

�
�s

2�

�
2
�B3-jet þ

�
�s

2�

�
3
�C3-jet;

where

�A3-jet ¼ A3-jet; �B3-jet ¼ B3-jet � A3-jetAtot;

�C3-jet ¼ C3-jet � B3-jetAtot � A3-jetðBtot � A2
totÞ

and Atot ¼ 2,

Btot¼N2
c�1

8Nc

��
243

4
�44�3

�
Ncþ 3

4Nc

þð8�3�11ÞNf

�
:

TABLE I. The LO coefficient A3-jet, the NLO coefficient B3-jet
and the NNLO coefficient C3-jet for the three-jet cross section

with the Durham jet algorithm and various values of ycut.

ycut A3-jet B3-jet C3-jet

0.3 0.02 0.13 �6� 3
0.1 2.12 34.3 ð2:0� 0:2Þ � 102

0.03 7.63 113.8 ð6:7� 0:6Þ � 102

0.01 15.7 152.6 ð�1:2� 0:2Þ � 103

0.003 27.9 �6:5 ð�8:1� 0:5Þ � 103

0.001 42.4 �562 ð�21� 1Þ � 103

0.0003 61.8 �1:97� 103 ð�25� 3Þ � 103

0.0001 82.9 �4:36� 103 ð7� 5Þ � 103
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FIG. 2 (color online). The scale variation of the three-jet rate

with the Durham jet algorithm at
ffiffiffiffiffiffi
Q2

p ¼ mZ with �sðmZÞ ¼
0:118. The bands give the range for the theoretical prediction
obtained from varying the renormalization scale from � ¼
mZ=2 to � ¼ 2mZ.
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The renormalization scale is varied from � ¼ mZ=2 to
� ¼ 2mZ. In this plot the experimental measured values
are also shown [44]. For values below ycut ¼ 0:001 the
results of Ref. [8] differ significantly from the ones pre-
sented here.

Conclusions.—In this Letter I reported on the NNLO
calculation for three-jet observables in electron-positron
annihilation. Particular attention was paid to the cancella-
tion of infrared singularities. I presented numerical results
for the Durham three-jet cross section.

I would like to thank Th. Gehrmann for useful discus-
sions and for providing me with the results of [8] for the
individual color factors.
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