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I report on a numerical program, which can be used to calculate any infrared safe three-jet observable in
electron-positron annihilation to next-to-next-to-leading order in the strong coupling constant « . The
results are compared to a recent calculation by another group. Numerical differences in three color factors

are discussed and explained.
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Introduction.—Jet observables and event shapes in
electron-positron annihilation can be used to extract the
value of the strong coupling constant «, [1-3]. This ap-
plies, in particular, to three-jet observables, where the
leading-order parton process is proportional to «,. In order
to extract the numerical value from the LEP data, precise
theoretical calculations are necessary, calling for a next-to-
next-to-leading order (NNLO) calculation. Because of the
large variety of interesting jet observables it is desirable not
to perform this calculation for a specific observable, but to
set up a computer program, which yields predictions for
any infrared safe observable relevant to the process
ete” — 3 jets. Such a task requires the calculation of
the relevant amplitudes up to two loops, a method for the
cancellation of infrared divergences and stable and effi-
cient Monte Carlo techniques. For the process e*e™ — 2
jets this was done in [4-7]. In this Letter I report on a
NNLO calculation for three-jet observables in electron-
positron annihilation. Recently, another group published
results for the NNLO corrections for three-jet observables
[8-11]. In the calculation presented here the methods used
are in many parts similar to the ones used in [8-11], al-
though I will show that at certain points there are important
differences. The authors of [8—11] made major contribu-
tions to the development of these methods [5,12-15].

The numerical results of the two calculations are com-
pared. The comparison is facilitated by splitting the NNLO
correction term into individually gauge-invariant contribu-
tions, such that each contribution is proportional to a
specific color factor. For the NNLO corrections to et e~ —
3 jets there are six different color factors. In three color
factors the two calculations agree (N2, N;/N, NJ%). They
disagree in the remaining three color factors (N2, N?,
N¢N,,). The numerical differences in these color factors
can be traced back to an incomplete cancellation of soft-
gluon singularities in the calculation of Refs. [§—11]. These
singularities require additional subtraction terms, which
are subtracted from the five-parton configuration and
added to the four-parton configuration. These subtraction
terms have a structure not present in [10] and are related to
soft gluons. These terms occur generically in any NNLO
calculation with three or more hard-colored partons.
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PACS numbers: 12.38.Bx, 13.66.Bc, 13.66.Jn, 13.87.—a

General setup.—The perturbative expansion of any
infrared-safe observable for the process e*e™ — 3 jets
can be written up to NNLO as
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A gives the LO result, B the NLO correction and Cg the
NNLO correction. The coefficient Cy can be decomposed
into color pieces
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where N, denotes the number of colors and N the number
of light quark flavours. In addition, there are singlet con-
tributions, which arise from interference terms of ampli-
tudes, where the electroweak boson couples to two
different fermion lines. These singlet contributions are
expected to be numerically small [16-18] and neglected
in the present calculation.

The computation of the NNLO coefficient Cy requires
the knowledge of the amplitudes for the three-parton final
state e e~ — Gqg up to two loops [18,19], the amplitudes
of the four-parton final states ete~ — gGggg and ete™ —
gqgq up to one-loop [20-23] and the five-parton final
states e*e” — Gqggg and eTe” — Gqgqg at tree level
[24,25]. Taken separately, the three-, four-, and five-parton
contributions are all individually infrared divergent. Only
the sum of them is finite. However, the individual contri-
butions live on different phase spaces, which prevents a
naive Monte Carlo approach. To render the individual con-
tributions finite, several options for the cancellation of
infrared divergences have been discussed, like phase space
slicing [26], sector decomposition [27,28], a method based
on the optical theorem [29] or the subtraction method
[5,12-15,30-41]. In the present calculation I use the sub-
traction method with antenna subtraction terms [15].

Cancellation of divergences.—To render the individual
three-, four-, and five-parton contributions finite, one adds
and subtracts suitable chosen terms. Schematically, we

© 2008 The American Physical Society


http://dx.doi.org/10.1103/PhysRevLett.101.162001

PRL 101, 162001 (2008) PHYSICAL

REVIEW LETTERS

week ending
17 OCTOBER 2008

have
5 partons: do-g.o) — daNLO — J@NNLO g yiterated
_ da,almost _ da/SOﬂ
4 partons: do-ff) + daNLO — ggloop — o iterated

duct Imost soft
— daproduct 1 gpalmost 7 soft

3 partons: dagz) + daNNLO  ggloop 4 gyproduct

Here, dago), dagl), and dagz) are the contributions from the
original amplitudes with five, four or three final state
partons. da™© is the NLO subtraction term for four-jet
observables, containing only three-parton tree-level an-
tenna functions. At NNLO there are several new subtrac-
tion terms required, each of them with a specific structure.
The term da™N'© contains the four-parton tree-level an-
tenna functions. The term da'°P contains three-parton
one-loop antenna functions together with tree-level matrix
elements and three-parton tree-level antenna functions to-
gether with one-loop matrix elements. The remaining
terms daiterated  goalmost  gaproduct and Jo5oft a1l contain
a product of two three-parton tree-level antenna functions.
In da'®™°d and da®™°' one antenna function has five-
parton kinematics, while the other antenna has four-parton

kinematics. The former subtraction term is an approxima-

tion to da™N©, while the latter approximates d(rgo) in al-

most color-correlated double unresolved configurations. In
daP™dt both antennas have four-parton kinematics. The
term da*° will be discussed below and is relevant only for
the color factors N2, N2, and N;N...

The subtraction terms without da*"* correspond to the
subtraction scheme of Ref. [10]. For any subtraction
scheme it is required, that in the three-parton channel the
explicit divergences cancel, that the four-parton channel is
integrable over a single unresolved phase space and in
addition that the explicit divergences cancel and finally
that in the five-parton channel the integrand is integrable
over single and double unresolved phase space regions. It
is easily checked that with the subtraction terms of
Ref. [10] the explicit divergences in the three-parton cancel
and I will focus in the following on the four- and five-
parton channels.

oft

In the four-parton channel the combination do-il) +
daN™O is free of explicit poles. It has been noted in
Ref. [10] that the combination da'®P + dqditerated 4
daProduet — goamost jnyolves in the color factors N2 and
N? poles of the form

1A, 2, HPXI(L, i, 2)1[1ns"/3’2’ - 1ns”sf'2],
€ Sy S12
where p;; and p, are the momenta obtained from p;, p;
and p, through a 3 — 2 phase space map. ﬂgo) is the
three-parton tree-level amplitude and Xg)(l, i,2) a three-
parton tree-level antenna function. In Ref. [10] it was

claimed that these poles vanish after the azimuthal inte-
gration over the unresolved phase space. This claim is
wrong. In the center-of-mass frame of p;/ + py with pys
and p; along the positive z axis, the relevant integral is

_ 1 27 (1 + C)(l - C2)
I= 27 j; ¢ 1n(Z(l - czcj]— 58 cosqﬁ))’
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FIG. 1 (color online). Dependence of the five-parton contribu-
tion on the slicing parameter y.;, for the Durham jet cross
section with y.,, = 0.01 in the color factors NZ, N? and NN...
“Standard” denotes the combination dol) — daN© —
daNNLO  ggfiterated — goalmost - <of the contribution from
da®°™, In addition the sum of the two terms is shown. For small
values of yn, the sum is independent of y;,.
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where for x = 2, j we set ¢, = cosf,, s, = sinf, and 6,
and 6; are the polar angles of partons 2 and j in the chosen
frame. The integral equals

I ln(l —cyc; +(c; — c2)>. @
1= cyc;+ e — el

The integral is zero for 6; < 6, but nonzero for 6; > 6,. In
Ref. [10] it was claimed that the integral vanishes in both
cases. As a consequence of the nonzero value for 6; > 6,
the explicit poles do not cancel in the combination
da,loop + daiterated + da,product _ da,almost' The same situ-
ation occurs also in the color factor N¢N..

These poles have a counterpart in the five-parton chan-
nel. Setting da*°" to zero and using a slicing approach, one
observes in the color factors N2, N?, and N;N, a logarith-
mic dependence on the slicing parameter y,;, = Smin/0>.
This is shown in Fig. 1.

These singularities require an additional subtraction
term and that is where the present calculation differs
from the one of Refs. [8—11]. da*°f is a subtraction term
related to soft gluons which ensures that the poles in the
four-parton configuration vanish after integration over the
azimuthal angle and which renders the five-parton configu-
ration independent of y,;,. The term da*° for the four-
parton configuration can be taken of the form

2 i 2
| AL, 2, HIPXI(L, 2)9( P1Pj _ ZPiPa )
2p1ap;  2P12p2
X [83(s1,) — S3(s12) — Sg(SQj) + 8%(s5,)], (5)

where 8‘3) is the integrated soft antenna function and p; is
given by
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FIG. 2 (color online). The scale variation of the three-jet rate
with the Durham jet algorithm at v/Q? = m, with a,(m,) =
0.118. The bands give the range for the theoretical prediction
obtained from varying the renormalization scale from u =
my/2 to u = 2my.

$2i
2 p. (6)

s = 4+ p ———=
D5 = P27 PDi 512 + 515

I also used the shorthand notation p;,;, = p; + p; + p».
The 6-function enforces #; > 6, in the specific frame
introduced above. da* for the five-parton configuration
is obtained by lifting Eq. (5) to the five-parton phase space.
Figure 1 shows that the sum of all contributions in the five-
parton channel is now independent of y,;,. [ have checked
that in the four-parton channel the explicit poles cancel
after integration over the unresolved phase space.
Numerical results.—The numerical program is built on
an existing NLO program for e* e~ — 4 jets [42]. I con-
sider the three-jet cross section, where the jets are defined
by the Durham jet algorithm [43]. The recombination
prescription is given by the E scheme. I take the center-

of-mass energy to be 4/Q? = m. The three-jet cross sec-
tion is expanded as

2 3
O3y = UO[%;AS-jet + (;*;_) Bsje + (2%;) C3-jet:|’

where o is the LO cross section for et e~ — hadrons. The
coefficients Az.je;, B3-je; and Cs-j are given for the renor-
malization scale w?> = Q? and various values of the jet
defining parameter y, in Table 1. The errors of Cs_j are
from the Monte Carlo integration. For selected values of
Yeut the contribution from the individual color factors to the
NNLO coefficient Cy_j is shown in Table II. Finally, Fig. 2
shows the scale variation of the jet rate defined by

T3jet @ - (as)2 _ (a5)3 _
— B = A (2] By + () Caiien
T ot 2 3-jet 2 3-jet 2 3-jet

and A = 2,

N2 — 17 (243 3
Btot :W[<T_44§3)NC +W+ (8{3 - ll)Nf]

TABLE 1. The LO coefficient Az, the NLO coefficient Bz
and the NNLO coefficient Cj.j., for the three-jet cross section
with the Durham jet algorithm and various values of y .

Yeut Azjer Bj.jet Caoje

0.3 0.02 0.13 —6+*3

0.1 2.12 34.3 (2.0 = 0.2) X 10?
0.03 7.63 113.8 (6.7 +0.6) X 102
0.01 15.7 152.6 (-1.2*+0.2) X 103
0.003 27.9 —6.5 (—8.1 =0.5) X 10°
0.001 424 —562 (21 1) x 10
0.0003 61.8 -1.97 X 10° (=25 +3) X 10°
0.0001 82.9 —4.36 X 10° (7£5) %103
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TABLE II. The contributions from the individual color factors
to the NNLO coefficient C_jg.

Yeut NZ NN,

0.1 (1.06 = 0.02) X 103 (—9.80 = 0.06) X 102
0.01 (4.6 +0.2) X 10 (—8.11 = 0.03) X 103

0.001 (=29 = 1) X 10° (=2.7£0.2) X 10°
Yeut N? Nf/Nc

0.1 —-35+1 21.9 £0.3

0.01 (9.7 £0.1) X 10? (—2.66 = 0.02) X 10?
0.001 (7.09 + 0.08) X 103 (—4.43 = 0.01) X 10°
ycut N(:_Z szf

0.1 —0.49 = 0.03 (1.336 = 0.003) X 102
0.01 0.25 = 0.15 (1.646 = 0.002) X 103
0.001 (3.38 £ 0.01) X 10? (7.41 + 0.01) X 103

The renormalization scale is varied from w = m,/2 to
pm = 2my. In this plot the experimental measured values
are also shown [44]. For values below y., = 0.001 the
results of Ref. [8] differ significantly from the ones pre-
sented here.

Conclusions.—In this Letter I reported on the NNLO
calculation for three-jet observables in electron-positron
annihilation. Particular attention was paid to the cancella-
tion of infrared singularities. I presented numerical results
for the Durham three-jet cross section.

I would like to thank Th. Gehrmann for useful discus-
sions and for providing me with the results of [8] for the
individual color factors.
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