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We formulate an exact result, which we refer to as the pumping restriction theorem (PRT). It imposes

strong restrictions on the currents generated by periodic driving in a generic dissipative system with

detailed balance, and provides a universal nonperturbative approach to explore the stochastic pump effect

in nonadiabatically driven systems.
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Introduction.—The stochastic pump effect (SPE), which
is the rectification of classical stochastic currents under
time-periodic driving, manifests itself in a variety of sys-
tems [1,2]. A theory of the SPE, developed in the limit of
adiabatically slow [3,4], and weak [5] perturbations pro-
vided qualitative insight as well as proposed quantitative
approaches for pump-current calculations.

Beyond the perturbative limits universal results have
been very rare, and a unifying theory is yet to emerge.
The recently discovered fluctuation theorems proposed a
new approach to the nonadiabatic regime [6]. They ad-
dressed such questions as work production or probability
relations among single trajectories [7], but not the magni-
tude of the SPE. Steps have been made to develop efficient
numerical algorithms for SPE evaluations [8].

In a recent work of Rahav, Horowitz, and Jarzynski [9], a
universal result for the nonadiabatic regime, called the
‘‘no-pumping’’ theorem, was formulated. One can parame-
trize kinetic rates of an arbitrary Markov chain with de-
tailed balance conditions, so that for any pair of sites i and j
these rates are written as kij ¼ keEj�Wij , where Ei can be

called the depth of a potential well i, and Wij ¼ Wji is

called the size of the potential barrier i-j. Energy scale is
kBT ¼ 1. The theorem [9] states that to generate rectified
currents during a cyclic process, both well depths and
barrier sizes must be varied.

In this Letter, we derive generic restrictions on the SPE,
that include previously found theorems [3,9] as a special
case. We show that there is a wide class of stochastic
models on graphs, where nonadiabatic but periodic modu-
lation of some parameters leads to a zero time-averaged
flux through any link. We also predict restrictions on the
values of nonzero pump currents when they are allowed.
Such restrictions are sensitive to the topology of the graph
representing the system.

Representative examples.—Consider a particle moving
according to Markov chain rules on a graph with a finite
number of states and the detailed balance. First, we note a

trivial observation, that periodic variation of parameters on
a treelike graph would not produce a net current because
any flux that passes through any given link would even-
tually return through the same link after driven parameters
return to the initial values. Pump currents are possible only
on graphs with loops, such as the one shown in Fig. 1. Note,
however, that the previous analysis still applies to some of
the links. Namely, the integrated over time fluxes through
links 1–2 and 4–5 in Fig. 1 must be zero.
A less trivial problem is whether there are general con-

ditions (beyond the situation discussed in [9]) under which
the flux through any link belonging to the loop in Fig. 1,
such as the link 2–3 can be zero. For the model in Fig. 1 we
claim, that if one varies the rates related to the links 1–2
and 4–5 cyclically but otherwise arbitrarily, while other
rates remain constant and satisfy the detailed balance
condition, then the time-integrated current through any
link on the loop will be zero. To prove it, we split the set
of links in Fig. 1 into two subsets f1� 2; 4� 5g 2 X1 and
f2� 3; 3� 4; 2� 4g 2 X0. Consider the evolution of
probabilities pi on three sites connected by the links in
X0, i.e., the sites with indexes i ¼ 2, 3, 4. Conservation
laws require that

_p2 ¼ j12ðtÞ � j23ðtÞ � j24ðtÞ; _p3 ¼ j23ðtÞ � j34ðtÞ;
_p4 ¼ j34ðtÞ þ j24ðtÞ � j45ðtÞ; (1)

where jijðtÞ is the current passing through the link i-j.

Requiring the final probability distribution to be equal to
the initial one, we reach the conditions

FIG. 1 (color online). Five-state graph with one loop [2342].
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Z T

0
dt _pi ¼

Z T

0
dtj12ðtÞ ¼

Z T

0
dtj45ðtÞ ¼ 0; (2)

where the upper limit of the integration depends on the
choice of the driving protocol. In case of a single localized
pulse that drives kinetic rates on links in X1, T must be
formally infinite in order to allow the system to relax to the
equilibrium. In case of a steady periodic driving with the
period �, if the system already reached the steady regime
with piðtÞ ¼ piðtþ �Þ, one can choose the upper integra-
tion limit T ¼ �.

The current through any link can be formally written in
terms of instantaneous site probabilities and the kinetic
rates, jij ¼ kjipi � kijpj. Denote �i �

R
T
0 piðtÞdt.

Integrating (1) over time, using (2), one arrives at

�ðk32 þ k42Þ�2 þ k23�3 þ k24�4 ¼ 0;

�ðk23 þ k43Þ�3 þ k32�2 þ k34�4 ¼ 0;

�ðk24 þ k34Þ�4 þ k42�2 þ k43�3 ¼ 0:

(3)

The set of Eqs. (3) for �i coincides with the one for
probabilities on a three-state Markov chain with the same
topology and rates as for a subset X0 at equilibrium state.
Since all rates on this subset are time independent and
satisfy the detailed balance, the solution of (3) is �i ¼
Ce�Ei , i ¼ 2, 3, 4, where C is a constant that depends on
the details of the driving protocol, but is equal for all three
states on the loop. The total flux passed through, e.g., the
link 2–3 then reads

J23ðTÞ �
Z T

0
j23ðtÞdt ¼ Cðk32e�E2 � k23e

�E3Þ ¼ 0: (4)

This concludes our proof that varying the kinetic rates
outside the loop only, does not lead to a net time-averaged
flux through any link on the graph in Fig. 1.

Numerical check.—To test our predictions we performed
numerical simulations for the graph in Fig. 1. We assume
the kinetic rates to satisfy the detailed balance condition
[9]. Figure 2 shows the flux passed through the link 2–3 on
the loop, when only parameters E1 and W45 outside the
loop are changing with time. After completion of the
external driving, the system relaxes with a zero net current
through the link 2–3, as we predicted.

Our numerical results show that if barriers are varied on
the loop but potential depths Ej are varied only on external

sites then nonzero pump current through the loop links
appears, as shown in Fig. 3. However, the opposite is not
true. Namely, if one varies well depths on the loop sites but
barriers are varied along external links, numerically we
always found no overall pump flux, as we show in Fig. 4.
The latter result is also easy to understand by introducing

the quantities fi ¼
R
T
0 dt½eEiðtÞpiðtÞ�, i ¼ 2, 3, 4. The same

analysis as before leads to the equilibrium master equation
for fi with equal forward/backward rates connecting any

pair of sites, and a constant solution, ensuring the zero
time-averaged current through any link on the loop.
Pumping-restriction theorem (PRT).—For a graph X we

denote the vector spaces of time-averaged populations � 2
C0ðXÞ and time-averaged currents J 2 C1ðXÞ, so that � ¼
f�ag, J ¼ fJabg with Jba ¼ �Jab and Jab ¼ 0 when the
nodes a and b are not connected by an edge. We further
introduce the boundary operator @: C1ðXÞ ! C0ðXÞ by
ð@JÞa ¼ P

bJba. Let H1ðXÞ be the subspace of physical
time-averaged currents, i.e., satisfying the continuity con-
dition, and H0ðXÞ represent the space of populations that
would be constant within the connected components of X.
Note that the conjugate operator @y: C0ðXÞ ! C1ðXÞ has a

FIG. 2. The total flux passed through the link 2–3 by time t.
Variable parameters are E1ðtÞ ¼ E1 þ E sinð!tÞ, and W45ðtÞ ¼
W45 þW cosð!tÞ, for t 2 ð0; 2�=!Þ, and E1ðtÞ ¼ E1, W45ðtÞ ¼
W45 þW for t > 2�=!, and we distinguish between E1ðtÞ and
E1 etc. Choice of constant parameters is ! ¼ 1, k ¼ 1, E ¼ 1,
W ¼ 2, E1 ¼ �1, E2 ¼ 0:2, E3 ¼ �0:05, E4 ¼ 0:1, E5 ¼
�0:25, W45 ¼ 0:3, W12 ¼ 0, W23 ¼ 0:2, W34 ¼ �0:2, W24 ¼
0:25, Wij ¼ Wji for any i-j.

FIG. 3. The total flux passed through the link 2–3 by time t.
Wij is varied along one of the loop links. Variable parameters,

indicated on a graph legend, change with time according to
EiðtÞ ¼ Ei þ E sinð!tÞ, and WijðtÞ ¼ Wij þW cosð!tÞ, for t 2
ð0; 2�=!Þ, and EiðtÞ ¼ Ei, WijðtÞ ¼ Wij þW for t > 2�=!.

Constant parameters are as in Fig. 2.
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form ð@y�Þab ¼ �a � �b. In detailed balance the rates are
given by kab ¼ gabe

Eb , where gab ¼ gba ¼ ke�Wab is re-
ferred to as a metric on X. The Euler theorem claims [10]

dimC1 � dimC0 ¼ dimH1 � dimH0: (5)

Consider a partition X ¼ X0 [ X1, where X0 consists of
edges (and adjacent nodes) where the rates are given by

kabðtÞ ¼ gabe
EbðtÞ, whereas X1 represents the rest of the

edges with arbitrary rates kabðtÞ. Note that X0 \ X1 does
not have any edges, whereas its nodes provide the currents
between X0 and X1. The PRT claims that (i) for the
described periodic driving the generated pumped current
is restricted to a vector subspace V such that J 2 V �
H1ðXÞ, with the dimension

dimV ¼ dimH1ðXÞ � dimH1ðX0Þ
¼ dimC1ðX1Þ � dimH0ðX0Þ � dimC0ðXÞ

þ dimC0ðX0Þ þ 1: (6)

(ii) Given a set of links with driven barriers, the embedding
V � H1ðXÞ is totally determined by the (time-
independent) metric gab on X0.

The statement (ii) implies that if there are constraining
equations that determine relations among possible pumped
currents through different links on X0, then coefficients in
these equations will depend only on the metric on X0. Note
also that the choice X0 ¼ X reproduces the second no-
pumping theorem of [9]. The PRT, however, claims
more: starting with the no-pumping situation with at least
one of Ei driven, and also driving the barriers at a certain
number n of links, the number of independent generated
currents may not exceed n, i.e., dimV � dimC1ðX1Þ, that
follows from second equality in (6) and obvious inequal-
ities dimH0ðX0Þ � 1, and ½� dimC0ðXÞ þ dimC0ðX0Þ� �

0. Each of the driven links can be viewed as either respon-
sible for an independent cycle or for connecting two dis-
connected parts. Therefore, the PRT can be interpreted as
the claim of the number of independent generated currents
to be equal to the maximum number of driven barriers,
which removal does not split the remaining graph into
disjoined components.
The proof of PRT is based on the Master Equation and

the expression for the current

_pðtÞ ¼ @jðtÞ; jðtÞ ¼ ĝ@yeÊðtÞpðtÞ; (7)

where the second equality is valid on X0. Representing the
current jðtÞ ¼ j0ðtÞ þ j1ðtÞ as the sum of the X0 and X1

components and averaging (integrating) Eq. (7) over time
we obtain equations for the time-integrated quantities

@ĝ@yf ¼ �� ; � ¼ @J1jX0\X1
;J0 ¼ ĝ@yf ; (8)

where f ¼ R
T
0 e

ÊðtÞpðtÞ, J1=0 ¼
R
T
0 j1=0ðtÞ, and � 2

H0ðX0 \ X1Þ describes the flux passed between X0 and
X1. Since the operator @ĝ@

y can be viewed as the discrete
Laplacian in X0 associated with the metric g, the first two
equations in (8) have a solution if and only if the total flux
entering any connected component of X0 and X1 is zero.
Let V0 � H0ðX0 \ X1Þ is the vector subspace of � that
satisfies these conditions. The solution of the first equation
in (8) is unique up to an additive constant distribution,
which does not affect the value of J0, i.e., the latter is
uniquely determined by � 2 V0 and metric on X0. On the
other hand, given � 2 V0, the component J1 is defined up
to a current that circulates completely within X1 and is
represented by an element of H1ðX1Þ. Thus we proved that
the metric on X0 and topology of X1 determine the restric-
tions on J, which implies the statement (ii) of PRT. In
addition our analysis implies

dimV ¼ dimV0 þ dimH1ðX1Þ: (9)

Combining Eq. (9) with the identity

dimH1ðXÞ ¼ dimH1ðX0Þ þ dimH1ðX1Þ þ dimV0; (10)

results in the first equality in (6). The second equality
follows from (5) and that dimH0ðXÞ ¼ 1. Note that the
identity (10) has a very simple physical meaning: For any
physical current J 2 H1ðXÞ on our graph we can identify

the current Jð01Þ 2 V0 that flows from X0 to X1, and once

the exchange current Jð01Þ is identified, the complete cur-

FIG. 5 (color online). A six state Markov chain.

FIG. 4. The total flux passed through the link 2–3 by time t,
when only Ei were allowed to vary on one of the loop sites and
Wij is varied along external links. Variable parameters, indicated

on a graph legend, change with time according to EiðtÞ ¼ Ei þ
E sinð!tÞ, and WijðtÞ ¼ Wij þW cosð!tÞ, for t 2 ð0; 2�=!Þ,
and EiðtÞ ¼ Ei, WijðtÞ ¼ Wij þW for t > 2�=!. Constant pa-

rameters are as in Fig. 2.
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rent J is defined up to the currents Jð0Þ 2 H1ðX0Þ and

Jð1Þ 2 H1ðX1Þ that circulate strictly within X0 and X1,
respectively.

We further illustrate the PRT using a graph in Fig. 5,
with dimC1ðXÞ ¼ 7 (the number of links), dimC0ðXÞ ¼ 6
(the number of sites), and two independent loops, e.g.,
[2342] and [2462] that form a basis in H1ðXÞ with
dimH1ðXÞ ¼ 2. If only one barrier is driven we can gen-
erate not more than a 1D subspace of currents, i.e. dimV �
1. If the barrier at links 1–2 or 4–5 are driven, we are at the
no-pump situation, since dimV ¼ 0 (the subgraph X0 ob-
tained upon elimination of the link 1–2, or 4–5, has two
loops, hence dimH1ðX0Þ ¼ 2). Driving the barrier at any
other single link yields dimV ¼ 1, since the graph X1 in
this case is connected. When a pair of barriers is driven we
have dimV ¼ 0 for f1� 2; 4� 5g; dimV ¼ 1 for f2� 3;
3� 4g, f2� 6; 6� 4g, and when one of 1–2, 4–5 and one
of the rest are driven. In all other cases we have dimV ¼ 2
(all currents may be generated). Consider in more detail the
f2� 3; 3� 4g driving. The subgraph X1 includes these two
links and the vertices f2; 3; 4g, X0 includes the rest of the
links and the vertices f1; 2; 6; 4; 5g, whereas X0 \ X1 has the
vertices f2; 4g and no links. The exchange goes through two
nodes f2; 4g, the exchange currents satisfy relations J23 þ
J43 ¼ 0 that yields dimV0 ¼ 2� 1 ¼ 1, i.e., while al-
lowed elements of X0 \ X1 have the form f�2; �4g, ele-
ments in V0 are restricted to be of the form fJ;�Jg. The
subgraph X1 has no loops, and, therefore, no internal
currents, which yields dimV ¼ 1, which agrees with the
PRT.

We also note that similar arguments lead to continuous
(Langevin dynamics) counterparts of the no-pumping
theorems of [9]. Let gijðxÞ be a metric in a compact ori-
ented manifoldM that describes bath-induced fluctuations/

dissipation. If parametrized as gikðxÞ ¼ hikðxÞeVðx;tÞ, where
h is time independent and V is a periodic in time potential,
then JjðxÞ ¼ 0.

Conclusion.—Many emerging mesoscopic devices, in-
cluding molecular motors [3] and nanoscale electronic
circuits [11] can be modeled as discrete connected entities
with stochastic transitions among different states. The
control over such new devices is impossible without deep
understanding of nonadiabatic strongly driven regimes of
their operation. Our result is a step toward the theory of
such a control. The PRT, presented here, determines the
restrictions in the space of pumped current values on a
graph. No-pumping conditions follow as its special con-
sequences. The restrictions on the pump-current space
suggest, for example, that an application of a periodic
stimulus can be used to induce a localized rectified effect
without perturbing the whole circuit on average even if all
its components are connected. It should be useful to ex-
plore how the PRT is modified by quantum effects.
Violation of the ‘‘no-pumping’’ conditions due to quantum

corrections can be employed to detect the quantum pump
effect [12] by cooling the electronic circuit in the no-
pumping regime down to the quantum domain.
Another possible application for this work is the recon-

struction of the stochastic network topologies, e.g., in
biochemical reactions. Standard measurement techniques,
such as those based on the linear response, appear insuffi-
cient. One would expect to find a nonzero signal anywhere
on an ergodic Markov chain in response to a time-
dependent current inducing perturbation. However, we
showed that measuring rectified current in response to
external periodic stimulus can help one to identify whether
or not two given links belong to the same loop. One of the
perturbed links must belong to a common loop with the
measured one in order to observe the SPE. Detecting only
the presence of the SPE can be sufficient to deduce the
topological structure of the network completing only a
small number of measurements.
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