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We derive an exact solution for the Casimir force between two arbitrary periodic dielectric gratings and

illustrate our method by applying it to two nanostructured silicon gratings. We also reproduce the Casimir

force gradient measured recently [H. B. Chan, Y. Bao, J. Zou, R. A. Cirelli, F. Klemens, W.M. Mansfield,

and C. S. Pai, Phys. Rev. Lett. 101, 030401 (2008)] between a silicon grating and a gold sphere taking into

account the material dependence of the force. We find good agreement between our theoretical results and

the measured values both in absolute force values and the ratios between the exact force and proximity

force approximation predictions.
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Introduction.—The availability of experimental setups
that allow accurate measurements of surface forces be-
tween macroscopic objects at submicron separations has
recently stimulated a renewed interest in the Casimir ef-
fect. In 1948, Casimir showed that two electrically neutral,
perfectly conducting plates, placed parallel in vacuum,
modify the vacuum energy density with respect to the
unperturbed vacuum [1]. The vacuum energy density
varies with the separation between the mirrors and leads
to the Casimir force, which scales with the inverse of the
fourth power of the mirror separation L.

The Casimir force is highly versatile, and tailoring it
could potentially be useful in the design and control of
micro- and nanomachines. While the material dependence
of the Casimir force has been thoroughly studied between
two plane mirrors (see, e.g., [2–5]), for most other geome-
tries exact calculations exist only for perfectly reflecting
boundaries (see, e.g., [6]). If material properties are taken
into account, the shape dependence of the Casimir force is
usually treated using the proximity force approximation
(PFA), which amounts to summing up contributions at
different distances as if they were independent.

In a recent Letter [7], Chan et al. present the first
measurement of the Casimir force between a silicon grat-
ing of high aspect ratio and a gold sphere and demonstrate
the violation of PFA in this geometry. Corresponding cal-
culations taking into account the periodic structure beyond
PFA, but only for perfect mirrors [8], turn out to lead to a
too-large deviation from PFA [7].

In this Letter, we present the first exact calculation of the
Casimir force between gratings of arbitrary periodic struc-
ture, where we take explicitly into account the (arbitrary)
dielectric permittivity of the material. We first present
formulations for the Casimir energy between two periodic
dielectric gratings and outline the derivation of these for-
mulas. We then apply our formulation to the situation of
two rectangular silicon gratings and show that our calcu-
lation yields deviations of the real force from the PFA

prediction up to 24%. We also performed calculations
corresponding to the measurement by Chan et al. allowing
therefore a first quantitative theory-experiment compari-
son. The result taking into account the finite conductivity
gives a smaller deviation of the exact force from the PFA
prediction than the calculation for perfect mirrors.
General procedure.—We consider two periodic dielec-

tric gratings of arbitrary form separated by a vacuum slit.
The special case of lamellar (or rectangular) gratings is
depicted in Fig. 1. The geometrical parameters are the
corrugation depth a, the period d, and the gap d1. The
gaps of both gratings are separated by a distance L. For
simplicity, we will suppose the space between the two
gratings to be filled with vacuum with � ¼ � ¼ 1.
The physical problem is time- and z-invariant, so elec-

tric and magnetic fields can be written in the form

Eiðx; y; z; tÞ ¼ Eiðx; yÞ expðikzz� i!tÞ; (1)

Hiðx; y; z; tÞ ¼ Hiðx; yÞ expðikzz� i!tÞ; (2)

respectively. Let us first suppose the upper grating to be
absent and consider a generalized conical diffraction prob-
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FIG. 1 (color online). Rectangular gratings geometry.
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lem on the lower grating. The longitudinal components of
the electromagnetic field outside the corrugated region
(y > a) may be written by making use of a generalization
of the Rayleigh expansion for an incident monochromatic
wave:

Ezðx; yÞ ¼ IðeÞp expði�px� i�ð1Þ
p yÞ

þ Xþ1

n¼�1
RðeÞ
np expði�nxþ i�ð1Þ

n yÞ; (3)

Hzðx; yÞ ¼ IðhÞp expði�px� i�ð1Þ
p yÞ

þ Xþ1

n¼�1
RðhÞ
np expði�nxþ i�ð1Þ

n yÞ; (4)

�p ¼ kx þ 2�p=d; �ð1Þ2
p ¼ !2 � k2z � �2

p; (5)

�n ¼ kx þ 2�n=d; �ð1Þ2
n ¼ !2 � k2z � �2

n; (6)

with an integer p. The sums are performed over all integers
n. All other field components can be expressed via the
longitudinal components Ez and Hz. This solution is valid
outside any periodic one-dimensional structure.

We now have to determine the coefficients RðeÞ
np and RðhÞ

np

for a specific periodic geometry profile. For this purpose,

we rewrite the Maxwell equations inside the corrugation
region 0< y< a in the form of first-order differential
equations @A

@y ¼ MA, whereM is a square matrix of dimen-

sion 8N þ 4, AT ¼ ðEz; Ex; Hz; HxÞ, and 2N þ 1 is the
number of Rayleigh coefficients considered in every
Rayleigh expansion. For a rectangular dielectric grating,
the matrix M is a constant matrix. At y ¼ 0, the solution
has to satisfy the following expansions, valid for y � 0:

Ezðx; yÞ ¼
Xþ1

n¼�1
TðeÞ
np expði�nx� i�ð2Þ

n yÞ; (7)

Hzðx; yÞ ¼
Xþ1

n¼�1
TðhÞ
np expði�nx� i�ð2Þ

n yÞ; (8)

�ð2Þ2
n ¼ ��!2 � k2z � �2

n: (9)

We then determine the unknown Rayleigh coefficients by
matching the solution of equations @A

@y ¼ MA inside the

corrugation region with Rayleigh expansions (3) and (4)
at y ¼ a and expansions (7) and (8) at y ¼ 0. Everywhere
in the calculations we assumed � ¼ 1.
The fields Ez and Hz are not decoupled for kz � 0. This

is why the reflection matrix R1 for a reflection from a lower
grating can be defined as follows:

R1ð!Þ ¼ RðeÞ
n1q1ðIðeÞp ¼ �pq1 ; I

ðhÞ
p ¼ 0Þ RðeÞ

n2q2ðIðeÞp ¼ 0; IðhÞp ¼ �pq2Þ
RðhÞ
n3q3ðIðeÞp ¼ �pq3 ; I

ðhÞ
p ¼ 0Þ RðhÞ

n4q4ðIðeÞp ¼ 0; IðhÞp ¼ �pq4Þ

 !
: (10)

Performing a change of variables y ¼ �y0 þ L, x ¼ x0 � s
(s < d) in (3) and (4), it is possible to obtain the reflection
matrix R2up for the reflection of an upward wave from a
grating with the same profile turned upside down, dis-
placed from the lower grating by �x ¼ s, �y ¼ L. Note
that for the upper grating in Fig. 1 the special case s ¼ 0 is
depicted.

Up to now, we considered a diffraction problem on a
single grating. In Ref. [9], the Casimir energy between two
bodies, the diffraction properties of which can be described
by a scattering matrix, has been derived in plane geome-
tries on the basis of canonical quantization. Roughness
corrections were derived on the basis of a scattering ap-
proach in Ref. [10]. The path integral method was used to
obtain multipole expansion of the Casimir energy between
the two compact objects [11]; exact results in spherical
geometries [11,12] were also derived.

We outline a novel derivation here, which can be applied
to various Casimir systems. To obtain the Casimir energy,
we need to determine the eigenfrequencies of all stationary
solutions of the generalized diffraction problem of subse-
quent diffraction of the electromagnetic field on two peri-
odic gratings separated by a gap-gap distance L. These
eigenfrequencies can be summed up by making use of an
argument principle, which states

1

2�i

I
�ð!Þ d

d!
lnfð!Þd! ¼ X

�ð!0Þ �
X

�ð!1Þ;

(11)

where !0 are zeros and !1 are poles of the function fð!Þ
inside the contour of integration. Degenerate eigenvalues
are summed over according to their multiplicities. For the
Casimir energy, we have �ð!Þ ¼ @!=2. The equation for
eigenfrequencies of the corresponding problem of classical
electrodynamics is fð!Þ ¼ 0.
Consider first the plane-plane geometry when two di-

electric parallel slabs (slab 1: y < 0, slab 2: y > L) are
separated by a vacuum slit (0< y< L). In this case, TE
and TM modes do not couple. The equation for TE eigen-
frequencies is

fð!Þ ¼ 1� r1TEð!Þr2TEupð!Þ ¼ 0: (12)

Here r1TEð!Þ is the reflection coefficient of a downward
plane wave which reflects on a dielectric surface of slab 1
at y ¼ 0, while r2TEupð!Þ is the reflection coefficient of an

upward plane wave which reflects on a dielectric surface of
slab 2 at y ¼ L. One can deduce from Maxwell equations
that r2TEupð!Þ ¼ r2TEð!Þ expð2ikyLÞ [r2TEð!Þ is a reflec-

tion coefficient of a downward TE plane wave which
reflects on a dielectric slab 2 now located at y < 0].
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From (12) and the analogous equation for TM modes, one
immediately obtains the Lifshitz formula by making use of
the argument principle (11).

For two periodic dielectrics separated by a vacuum slit,
one has to consider a reflection of downward and upward
waves from a unit cell 0< kx < 2�=d. Because of the
structure of the surface, TE and TMmodes do not decouple
anymore, but they are coupled by the diffraction process.
The equation for normal modes states that

R1ð!iÞR2upð!iÞc i ¼ c i; (13)

where c i is an eigenvector describing the normal mode
with a frequency !i. Instead of Eq. (12), one obtains from
(13) the following condition for eigenfrequencies:

det½I � R1ð!ÞR2upð!Þ� ¼ 0: (14)

For every kx and kz the solution of (14) yields possible
eigenfrequencies !i of the solutions of Maxwell equations
that should be substituted into the definition of the Casimir
energy E ¼ P

i@!i=2. These solutions should tend to zero
for y ! �1. The summation over the eigenfrequencies is
performed by making use of the argument principle (11),
which yields the Casimir energy of two parallel gratings on
a ‘‘unit cell’’ of period d and unit length in the z direction:

E ¼ @cd

ð2�Þ3
Z þ1

0
d!

Z þ1

�1
dkz

Z 2�=d

0
dkx ln det½I

� R1ði!ÞR2upði!Þ�; (15)

where c is the speed of light in vacuum. This is an exact
expression valid for two arbitrary periodic dielectric grat-
ings separated by a vacuum slit. It can be applied to
calculate the Casimir energy of any parallel periodic grat-
ings made of a material described by a dielectric function,
with surface corrugations of arbitrary geometry.

Consider the particular case s ¼ 0, depicted in Fig. 1.
From the derivation sketched above, it follows that

R2upði!Þ ¼ Kði!ÞR2ði!ÞKði!Þ; (16)

where Kði!Þ is a diagonal 2ð2N þ 1Þ matrix of the form

Kði!Þ ¼ G 0
0 G

� �
; (17)

with matrix elements e�L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2þk2zþ½kxþð2�m=dÞ�2

p
, m ¼

�N; . . . ; N, on a main diagonal of a matrix G. Note that
in all Rayleigh expansions the Fourier basis is taken sym-
metrically around m ¼ 0. When changing the maximum
value of m from N � 1 to N, each Rayleigh coefficient
RNpði!Þ appearing in the reflection matrices is multiplied

by a factor ’ e�2�NL=d coming from the matrix Kði!Þ. As
a consequence, when 2�NL=d � 1 is satisfied, the con-
tribution of the coefficients RNpði!Þ is suppressed expo-

nentially. Therefore, for large enough N, changing N has
only a little impact on the final result.

Rectangular gratings.—We have numerically calculated
the exact Casimir force for two rectangular gratings at zero

temperature in the geometry of Fig. 1 for silicon for differ-
ent values of d, d1 ¼ d=2, and a ¼ 100 nm by making use
of the formulas (15)–(17) and a Drude-Lorentz model for
the dielectric permittivity of intrinsic silicon [5]. We com-
pare our exact results of the Casimir force for different
values of d to the PFA results. Calculated with the prox-
imity force approximation, the Casimir force between the
two gratings is just the geometric sum of two contribu-
tions corresponding to the Casimir force between two
plates FPP at distances L and L� 2a, that is, FPFA ¼ 1

2 �½FPPðLÞ þ FPPðL� 2aÞ�. In particular, it is independent of
the corrugation period d. To assess quantitatively the va-
lidity of the PFA, we plot the dimensionless quantity � ¼
F

FPFA
[12]. The ratio is presented on Fig. 2. Exact and PFA

results differ for silicon by up to 24% for a corrugation
period of 100 nm, and the PFA violation could thus be
demonstrated experimentally. We recover the PFA result in
two limiting cases, for a vanishing corrugation period and
for very large corrugation periods. In between, the exact
result for the Casimir force is always smaller than the PFA
prediction, in contrast to calculations for perfect conduc-
tors, where the resulting force is always larger than the PFA
prediction.
We will now apply our method to the recent experiment

by Chan et al. [7], who measured the Casimir force gra-
dient between a silicon grating with nanostructured
trenches and a gold sphere of radius R ¼ 50 �m. The
force gradient F0

PS between a sphere of radius R and a

plate can be expressed via the force FPP in the plane-plane
configuration as F0

PS ¼ 2�RFPP. This is why we show in

Fig. 3 the zero temperature result for the absolute force
values evaluated for a grating with the experimental pa-
rameters a ¼ 980 nm, d ¼ 400 nm, and d1 ¼ 196 nm
placed in front of a gold plate (we used a plasma model

FIG. 2 (color online). Casimir force normalized by its PFA
value for two Si gratings with a ¼ 100 nm and d1 ¼ d

2 as a

function of d at a fixed distance L ¼ 250 nm.
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with a plasma frequency!p ¼ 9 eV for gold and a Drude-

Lorentz model for intrinsic silicon [5]).
From our calculation, we obtain a force FPP ¼

0:51 N=m2 for a plate separation of 150 nm. With the
experimental parameters, this leads to a prediction for the
Casimir force gradient of F0 ¼ 160:8, 56.4, and
24:6 pN=�m at, respectively, L� a ¼ 150, 200, and
250 nm. The absolute values of the force are thus in
good agreement with the measured values depicted in
Fig. 3(c) of [7].

We finally present ratios of our results for the force to the
predictions of PFA for two different gratings. Figure 4
shows � as a function of L� a for two gratings corre-
sponding to the experiment with a ¼ 980 nm, d ¼
400 nm, and d1 ¼ 196 nm (green line) and a ¼
1070 nm, d ¼ 1000 nm, and d1 ¼ 522 nm (blue line)
and gives reasonable agreement with experimental points
and the fit in Fig. 3(d) of [7].
The fact that the perfect conductor model fails might be

due to the influence of surface plasmons, as the grating
affects their dispersion relation. Surface plasmons contrib-
ute essentially and at all distances to the Casimir force [13–
16]; the Casimir force thus has to change considerably
when structured surfaces are considered. These changes
are not visible in a perfect conductor model which ignores
the existence of surface plasmons.
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FIG. 4 (color online). Casimir force normalized by the PFA
value between a Si grating and a gold plate as a function of
distance for two different gratings. Solid curves are calculated by
making use of the least square method from the theoretical
points on the figure.
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FIG. 3 (color online). Casimir force between a Si grating and a
gold plate as a function of distance.
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