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In this Letter we present a general mechanism by which simple dynamics running on networks become

self-organized critical for scale-free topologies. We illustrate this mechanism with a simple arithmetic

model of division between integers, the division model. This is the simplest self-organized critical model

advanced so far, and in this sense it may help to elucidate the mechanism of self-organization to criticality.

Its simplicity allows analytical tractability, characterizing several scaling relations. Furthermore, its

mathematical nature brings about interesting connections between statistical physics and number

theoretical concepts. We show how this model can be understood as a self-organized stochastic process

embedded on a network, where the onset of criticality is induced by the topology.
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In the late 1980s, Bak, Tang, and Wiesenfeld (BTW)
[1,2] introduced the concept of Self-Organized Criticality
(SOC) as a mechanism explaining how multicomponent
systems can evolve naturally into barely stable self-
organized critical structures without external ‘‘tuning’’ of
parameters. This single contribution generated an enor-
mous theoretical and experimental research interest in
many areas of physics and interdisciplinary science, and
many natural phenomena were claimed to exhibit SOC [3–
5]. However, there was not a general accepted definition of
what SOC exactly is, and the conditions under which it is
expected to arise. In order to disengage the mechanism of
self-organization to criticality one should likely focus on
rather ‘‘simple’’ models, and in this sense Flyvbjerg re-
cently introduced the ‘‘simplest SOC model’’ along with a
workable definition of the phenomenon [6,7]; namely, ‘‘a
driven, dissipative system consisting of a medium through
which disturbances can propagate causing a modification
of the medium, such that eventually, the disturbances are
critical, and the medium is modified no more—in the
statistical sense.’’

On the other hand, in the last years it has been realized
that the dynamics of processes taking place on networks
evidence a strong dependence on the network’s topology
[8,9]. Concretely, there exists a current interest on the
possible relations between SOC behavior and scale-free
networks [9], characterized by power law degree distribu-
tions PðkÞ � k��, and how self-organized critical states
can emerge when coupling topology and dynamics [10–
13].

In this Letter, we introduce a rather simple and general
mechanism by which the onset of criticality in the dynam-
ics of self-organized systems is induced by the scale-free
topology of the underlying network of interactions. To
illustrate this mechanism we present a simple model, the
division model from now on, based uniquely in the division
between integers. We show that this model fulfills
Flyvbjerg’s definition of SOC and to our knowledge, con-

stitutes the simplest SOCmodel advanced so far that is also
analytically solvable. Interestingly, this model establishes
connections between statistical physics and number theory
(see [14] for a complete bibliography on this topic).
In number theory, a primitive set of N integers is the one

for which none of the set elements divide exactly any other
element [15–17]. Consider an ordered set of M� 1 inte-
gers f2; 3; 4; . . . ;Mg (notice that zero and one are excluded,
and that integers are not repeated), that we will name as the
pool from now on. Suppose that we have extracted N
elements from the pool to form a primitive set. The divi-
sion model proceeds then by drawing integers at random
from the remaining elements of the pool and introducing
them in the set. Suppose that at time t the primitive set
contains NðtÞ elements. The algorithm updating rules are
the following: (R1) Perturbation: an integer a is drawn
from the pool at random and introduced in the primitive
set. (R2) Dissipation: if a divides and/or is divided by say s
elements of the primitive set, then we say that an instanta-
neous division avalanche of size s takes place, and these
latter elements are returned to the pool, such that the set
remains primitive but with a new size Nðtþ 1Þ ¼ NðtÞ þ
1� s.This process is then iterated, and we expect the
primitive set to vary in size and composition accordingly.
The system is driven and dissipative since integers are
constantly introduced and removed from it, its size tempo-
ral evolution being characterized by NðtÞ.
In order to unveil the dynamics undergoing in the model,

we have performed several Monte Carlo simulations for
different values of the pool size M. In the top panel of
Fig. 1 we have represented for illustration purposes a
concrete realization of NðtÞ for M ¼ 104 and Nð0Þ ¼ 0.
Note that after a transient, NðtÞ self-organizes around an
average stable value Nc, fluctuating around it. In the insert
of the bottom panel of Fig. 1, we have plotted in log-log the
power spectrum of NðtÞ: the system evidences f�� noise,
with � ¼ 1:80� 0:01. The former fluctuations are indeed
related to the fact that at each time step a new integer
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extracted from the pool enters the primitive set (external
driving R1). Eventually (according to rule R2), a division
avalanche can propagate and cause a modification in the
size and composition of the primitive set. These avalanches
constitute the disturbances of the system. In Fig. 2 (top) we
have represented an example of the avalanche’s size evo-
lution in time. In the same figure (bottom) we show the
probability PðsÞ that a division avalanche of size s takes
place, for different pool sizes M. These latter distributions
are power laws PðsÞ � s�� expðs=s0Þ with � ¼ 2:0� 0:1:
disturbances are thus critical. Observe that the power law
relation suffers from a crossover to exponential decay at a
cutoff value s0 due to finite size effects (pool is finite),
and that the location of these cutoffs scales with the
system’s characteristic size s0 � ðM= logMÞ! with ! ¼
1:066� 0:003, what is typically characteristic of a finite
size critical state [3] (this characteristic size will be ex-
plained later in the text). We can conclude that according to
Flyvbjerg’s definition [6], the division model exhibits
SOC. Division avalanches lead the system to different mar-
ginally stable states, that are nothing but primitive sets of
different sizes and composition. Accordingly, for a given
pool ½2;M�, these time fluctuations generate a stochastic
search in the configuration space of primitive sets.

In what follows we discuss analytical insights of the
problem. Consider the divisor function [18] that provides
the number of divisors of n, excluding integers 1 and n:

dðnÞ ¼ Xn�1
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��
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where b� � �c stands for the integer part function. The aver-
age number of divisors of a given integer in the pool ½2;M�
is then:
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Accordingly, the mean probability that two numbers a and
b taken at random from ½2;M� are divisible is approxi-
mately P ¼ PrðajbÞ þ PrðbjaÞ ’ 2 logM=M. Moreover, if
we assume that the N elements of the primitive set are
uncorrelated, the probability that a new integer generates a
division avalanche of size s is on average ð2 logM=MÞN.
We can consequently build a mean field equation for the
system’s evolution, describing that at each time step an
integer is introduced in the primitive set and a division
avalanche of mean size ð2 logM=MÞN takes place:
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FIG. 2. Top: Single realization of the division model showing
the time distribution of division avalanches. Bottom: Probability
distribution PðsÞ that a division avalanche of size s takes place in
the system, for different pool sizesM ¼ 210 (triangles),M ¼ 211

(inverted triangles), M ¼ 212 (diamonds) and M ¼ 213 (circles).
In every case we find PðsÞ � s�� expðs=s0Þ with � ¼ 2:0� 0:1.
Note that the power law relation evidences an exponential cutoff
due to finite size effects at particular values of s0. Inset: Scaling
of the cutoff value s0 as a function of the system’s characteristic
size M= logM, with an exponent ! ¼ 1:066� 0:003.
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FIG. 1. Top: Single realization of the division model showing
the time evolution of the primitive set size NðtÞ for a pool size
M ¼ 104 and Nð0Þ ¼ 0. Notice that after a transient, NðtÞ self-
organizes around an average stable value Nc, fluctuating around
it. Bottom: (black dots) Scaling behavior of the average stable
value Nc as a function of the system’s characteristic size
M= logM. The best fitting provides Nc � ðM= logMÞ�, with � ¼
1:05� 0:01. (squares) Scaling of Nc as predicted by Eq. (8).
Inset: Plot in log-log of the power spectrum of NðtÞ, showing
f�� noise with � ¼ 1:80� 0:01 (this latter value is the average
of 105 realizations of NðtÞ for 4096 time steps after the transient
and M ¼ 104).

PRL 101, 158702 (2008) P HY S I CA L R EV I EW LE T T E R S
week ending

10 OCTOBER 2008

158702-2



Nðtþ 1Þ ¼ NðtÞ þ 1�
�
2 logM

M

�
NðtÞ; (3)

whose fixed point Nc ¼ M=ð2 logMÞ, the stable value
around which the system self-organizes, scales with the
system’s size as

NcðMÞ � M

logM
: (4)

Hitherto, we can conclude that the system’s characteristic
size is not M (pool size) as one should expect in the first
place, but M= logM. This scaling behavior has already
been noticed in other number-theoretic models evidencing
collective phenomena [19,20]. In Fig. 1 we have plotted
(black dots) the values of Nc as a function of the character-
istic sizeM= logM provided byMonte Carlo simulations of
the model for different pool sizes M ¼ 28; 29; . . . ; 215 (Nc

has been estimated averaging NðtÞ in the steady state).
Note that the scaling relation (4) holds; however, the exact
numerical values NcðMÞ are underestimated by Eq. (3).
This is reasonable since we have assumed that the primitive
set elements are uncorrelated, what is obviously not the
case: observe for instance that any prime number p �
bM=2c introduced in the primitive set will remain there
forever. Fortunately this drawback of our mean field ap-
proximation can be improved by considering the function
DðnÞ that defines the exact number of divisors that a given
integer n 2 ½2;M� has, i.e., the amount of numbers in the
pool that divide or are divided by n:

DðnÞ ¼ dðnÞ þ
�
M

n

�
� 1: (5)

Define pnðtÞ as the probability that the integer n belongs at
time t to the primitive set. Then, we have

pnðtþ1Þ¼
�
1� DðnÞ

M�NðtÞ
�
pnðtÞþ 1

M�NðtÞ½1�pnðtÞ�;
(6)

that leads to a stationary survival probability in the primi-
tive set:

p�
n ¼ 1

1þDðnÞ : (7)

In Fig. 3 (right) we depict the stationary survival probabil-
ity of integer n (black dots) obtained through numerical
simulations for a system with M ¼ 50, while squares
represent the values of p�

n as obtained from the Eq. (7).
Note that there exists a remarkable agreement. We now can
proceed to estimate the critical size values NcðMÞ as:

NcðMÞ � XM

n¼2

p�
n ¼

XM

n¼2

1

1þDðnÞ : (8)

In Fig. 1 we have represented (squares) the values of
NcðMÞ predicted by Eq. (8), showing good agreement
with the numerics (black dots).
Finally, previous calculations point out that system’s

fluctuations, i.e., division-avalanches distribution PðsÞ is
proportional to the percentage of integers having s divisors.
In order to test this conjecture, in Fig. 3 (left) we have
plotted a histogram describing the amount of integers
having a given number of divisors, obtained from compu-
tation of DðnÞ for M ¼ 106. The tail of this histogram
follows a power law with exponent � ¼ 2:0. This can be
proven analytically as it follows: the numbers responsible
for the tail of the preceding histogram are those that divide
many others, i.e., rather small ones (n 	 M). A small
number n divides typically DðnÞ ’ bMn c. Now, how many

‘‘small numbers’’ have DðnÞ divisors? The answer is n,
nþ 1; . . . ; nþ z where

�
M

n

�
¼

�
M

n� 1

�
¼ � � � ¼

�
M

n� z

�
: (9)
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FIG. 3. Left: Histogram of the amount of integers in ½2; 106� that have D divisors. The histogram has been binned to reduce scatter.
The best fitting provides a power law PðDÞ �D�� with � ¼ 2:01� 0:01, in agreement with PðsÞ (see the text). Right: (black dots)
Stationary survival probability of integer n in a primitive set for a pool size M ¼ 50, obtained from Monte Carlo simulations of the
model over 106 time steps (a preliminary transient of 104 time steps was discarded). (squares) Theoretical prediction of these survival
probabilities according to Eq. (7).
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The maximum value of z fulfills M
n�z � M

n ¼ 1, that is z ’
n2=M. The frequency of DðnÞ is thus frðDðnÞÞ ¼ n2=M,
but since s 
 DðnÞ ’ M=n, we get frðsÞ �Ms�2, and fi-
nally normalizing, PðsÞ � s�2.

Coming back to the Flyvbjerg’s definition of SOC,
which is the medium in the division model? Observe that
the process can be understood as embedded in a network,
where nodes are integers, and two nodes are linked if they
are exactly divisible. The primitive set hence constitutes a
subset of this network, that is dynamically modified ac-
cording to the algorithm’s rules. The degree of node n is
DðnÞ, and consequently the degree distribution PðkÞ � k�2

is scale-free. Hence the SOC behavior, which arises due to
the divisibility properties of integers, can be understood as
a sort of antipercolation process taking place in this scale-
free network. Observe that the division model is a particu-
lar case of a more general class of self-organized models.
These would be constituted by a network with M nodes
having two possible states (on/off) where the following
dynamics run: (R1) perturbation: at each time step a node
in the state off is randomly chosen and switched on, (R2)
dissipation: the s neighbors of the perturbed node that were
in the state on in that time step are switched off, and we say
that an instantaneous avalanche of size s has taken place.
NðtÞ measures the number of nodes in the state on as a
function of time. Its evolution follows a mean field equa-
tion that generalizes Eq. (3):

Nðtþ 1Þ ¼ NðtÞ þ 1� hki
M

NðtÞ; (10)

where hki is the network’s mean degree. Accordingly, in
every case NðtÞ will self-organize around an average value
NcðMÞ. Within regular or random networks, fluctuations
(avalanches) around NcðMÞ will follow a Binomial or
Poisson distribution, respectively. However, when the net-
work is scale-free with degree distribution PðkÞ � k��,
fluctuations will follow a power law distribution PðsÞ �
s�� with � ¼ �, and the dynamics will consequently be
SOC. In this sense, we claim that scale-free topology
induces criticality.

Some questions concerning this new mechanism can be
depicted, namely: which is the relation between the spe-
cific topology of scale-free networks and the power spectra
of the system’s dynamics? Which physical or natural sys-
tems evidence this behavior?

With regard to the division model, the bridge between
statistical physics and number theory should also be inves-
tigated in depth. This includes possible generalizations of
this model to other related sets such as k-primitive sets
[21], where every number divides or is divided by at least k
others (k acting as a threshold parameter), to relatively
primitive sets [22] and to cross-primitive sets [16] (where
this will introduce coupled SOC models). From the com-
putational viewpoint [23], properties of the model as a
primitive set generator should also be studied. Of special
interest is the task of determining the maximal size of a

k-primitive set [16,21], something that can be studied
within the division model through extreme value theory
[4].
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