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The instability of strained films for island formation is examined through an approach incorporating

both discrete microscopic details and continuum mechanics. A linear relationship between the island wave

number and misfit strain is found for large strains, while only in the small strain limit is a crossover to the

continuum elasticity result obtained. A universal scaling relation accommodating all range of misfit

strains is identified. Our results indicate that continuum mechanics may break down even at relatively

small misfit stress due to the discrete nature of crystalline surfaces.
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Strained film epitaxy has become one of the most im-
portant techniques in the manufacturing and processing of
nanoscale materials. While growth conditions for epitaxial
films are often chosen to suppress stress-induced instabil-
ities, in many cases these instabilities can be exploited for
the self-assembly of interesting nanostructures such as
quantum dots and nanowires on predefined substrates [1].
Understanding the fundamental mechanisms responsible
for film growth and evolution is thus essential for both
suppression and exploitation of these instabilities, as en-
countered in a broad variety of physical systems that are
dependent on epitaxial films. Most exploitation efforts
have focused on the growth of coherent, defect-free struc-
tures, and on the control of long-range ordering and size or
shape regularity as desired in optoelectronic device appli-
cations. For the example of coherent quantum dots or
strained islands [1–3], the formation of such surface nano-
structures is expected from a stress-driven, morphological
instability of the Asaro-Tiller-Grinfeld (ATG) type [4–6].
Subsequent evolution involves island shape transition [7,8]
and dynamic coarsening [8–10], as observed in recent
experiments on, e.g., Ge=Si and SiGe=Si. For large enough
islands, further stress release will lead to the nucleation of
misfit dislocations [11].

Despite such complexities much progress has been made
in the modeling of the self-assembly process. Continuum
elasticity theory has provided insight into the initial mor-
phological instability [5,6,12,13], island shape evolution
[8,14], and coarsening [15–18]. Such an approach is well
suited for the long-wavelength behavior of the system, but
does not incorporate the influence of the film crystalline
structure. Details of the crystalline structure can be cap-
tured via atomistic modeling such as kinetic Monte Carlo
simulations (with the incorporation of elastic energy
[19,20]), but these models are typically (computationally)
limited to small scales.

The focus of this Letter is on an approach that naturally
incorporates the discrete nature of a crystalline lattice and

standard continuum theory on large scales, which can be
applied to a wider range of applications that involve elas-
ticity at the nano and meso scales. More specifically, this
work is based on the phase field crystal (PFC) model which
models the ‘‘small’’ length scale of crystalline structures
on diffusive time scales [21,22]. To extend the applicability
of this model to larger scales, we analyze the amplitudes or
envelopes of the slowly varying film surface profile. This
multiscale treatment leads to a crossover behavior of film
properties at different misfits, showing the importance of
the film crystalline nature.
Here, we consider island formation on strained epitaxial

films. Classic continuum theory predicts that at the early
stages of growth, the island periodicity (�I) is inversely
proportional to the misfit strain ("m) squared [5,6] (similar
result is obtained even when wetting effects are included
[14,18]). However, this result disagrees with experiments
on SiGe=Sið001Þ [2,3] showing �I / "�1

m . Current theory
to account for this discrepancy is based on the surface
diffusivity difference between film components [12,17], a
feature that is specific for alloys and verified recently by
first-principle calculations [23]. Our study here suggests
that such "�1

m scaling is more general, and a crossover to
the continuum ATG result occurs only in the small misfit,
long-wavelength limit. Such qualitatively different behav-
ior is related to an upper limit on island wave number
imposed by the condition of ‘‘perfect’’ lattice relaxation
as will be discussed latter.
To illustrate the phenomena of interest, typical simula-

tion results are shown in Fig. 1 for two (2D) and three (3D)
dimensional island formation in semi-infinite strained
films. In this limit, a unique solution can be obtained for
�I, and it is sufficient to introduce strain in the initial
condition only, given an initial constrained film with the
lattice constant different from its equilibrium bulk state.
The simulations are based on the PFC model in which the
free energy functional F can be derived from classical
density functional theory and expressed in terms of a
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rescaled atomic density field nðr; tÞ [22]:
�F = ��kBT¼

Z
dr½BsnðR2r2þ1Þ2n=2

þðBl�BsÞn2=2�n3=6þn4=12�����; (1)

where �F ¼ F �F ðn ¼ 0Þ, �� is the average atomic
density, T is the temperature, and R is proportional to the
lattice spacing. This model yields a liquid-solid transition
controlled by � ¼ ðBs � BlÞ=Bs (>0 for solid phase)
which can be related to temperature difference from the
melting point. The solid phase has hexagonal or triangular
symmetry in 2D and bcc in 3D, and this model naturally
incorporates elasticity, plastic deformations, crystalline
anisotropy, anisotropic surface energy [24], and aniso-
tropic and temperature dependent elastic constants
C11=3 ¼ C12 ¼ C44 / Bs [21]. The dynamics of n is as-
sumed to be conserved, dissipative, and driven to minimize
F , i.e., @n=@t ¼ �r2�F =�nþ �, where � is due to the
thermal noise and � sets the time scale for dynamic pro-
cesses. After rescaling (with a length scale l0 ¼ R and time
scale �0 ¼ R2=�Bs), we have

@n=@t ¼ r2½��nþ ðr2 þ q20Þ2n� gn2 þ n3� þ �; (2)

where g ¼ ð3=BsÞ1=2=2 and q0 ¼ 1.

Details of both microscopic structure and larger-scale
morphological profile can be captured by Eq. (2) (see
Fig. 1), as well as the basic sequence of strained film
evolution observed in experiments (instabilities !
islands ! dislocations [21,22]). Quantitative results have
been obtained, with an example shown in Fig. 1(b) for the
1D power spectrum at film surface. The three peaks in this
figure, from right to left, correspond to the original strained
lattice, the relaxed surface lattice, and the larger-scale
profile of surface islands. The island peak shifts to smaller
wave number at later times and finally disappears when
misfit dislocations nucleate and reduce the misfit stress
responsible for the initial instability.
While direct simulation of Eq. (2) is useful, it is diffi-

cult to access the large time and length scales relevant for
small misfit strains. To access such scales, we extend
the amplitude expansion approach for the PFC model as
put forth by Goldenfeld et al. [25], particularly to incor-

porate a slow-scale (Oð�1=2Þ) average density field n0
which is needed to describe liquid-solid coexistence and
a miscibility gap [26]. We follow the standard multiple
scales approach [27] that separates ‘‘slow’’ scales for the
evolution of surface profiles and ‘‘fast’’ scales of the under-
lying crystalline structure. For 2D films, in the limit of
small �, the density field can be described as a superposi-
tion of 3 base modes of the hexagonal structure, with the
associated complex amplitudes varying on slow scales

ðX; Y; TÞ ¼ ð�1=2x; �1=2y; �tÞ, i.e., n ¼ n0ðX; Y; TÞ þP
3
j¼1 AjðX; Y; TÞeiq0j �r þ c:c: (with q0j the three hexagonal

basic wave vectors). This yields

@Aj=@t¼�q20�F =�A�
j ; @n0=@t¼r2�F =�n0; (3)

F ¼
Z

dr

�
ð��þ 3n20 � 2gn0Þ

X3
j¼1

jAjj2

þ X3
j¼1

jðr2 þ 2iq0j � rÞAjj2

þ 3

2

X3
j¼1

jAjj4 þ ð6n0 � 2gÞðA1A2A3 þ A�
1A

�
2A

�
3Þ

þ 6ðjA1j2jA2j2 þ jA1j2jA3j2 þ jA2j2jA3j2Þ � 1

2
�n20

þ 1

2
½ðr2 þ q20Þn0�2 �

1

3
gn30 þ

1

4
n40

�
: (4)

A linear stability analysis of these equations can now be
conducted to examine the instability of strained films to
buckle and form mounds/islands. This will be accom-
plished by linearizing around a planar interface separating
a liquid and strained film.
For a strained film with misfit "m, the hexagonal lat-

tice is distorted, and the amplitudes can be expressed by

A1;3 ¼ A0
1;3e

ið��xx��yy=2Þ and A2 ¼ A0
2e

i�yy, where �x ¼ffiffiffi
3

p
q0"m=2 and �y is determined by lattice relaxation along
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FIG. 1 (color online). (a) Gray scale image of epitaxial islands
in 3D PFC simulations, for a 4.8% tensile film of 5123 grid size
at t ¼ 31200 and with Bl ¼ 1 and Bs ¼ 0:988. (b) The 1D
structure factor along the film surface for a 2D 2.9% compressive
film with grid size 4096� 2048, Bl ¼ 9:8, and Bs ¼ 10.
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the y direction (perpendicular to the film surface) [28]. For
a base state involving a planar surface along the x direc-
tion, the amplitudes A0

j and n00 only depend on the normal

direction y and are also governed by Eqs. (3) and (4) (with
@x ¼ 0). We have calculated the equilibrium profile for this
1D base state, corresponding to nongrowing planar films
with liquid-solid coexistence. We find that larger Bs (pro-
portional to bulk modulus) leads to more diffuse liquid-
solid interface, and also to smaller miscibility gap which
slightly decreases with misfit "m.

Except for zero misfit, such 1D base-state profiles are
unstable against surface/interface perturbations due to
strain energy relaxation. This is examined by expanding

A0
jðx; y; tÞ ¼ A0

j ðyÞ þ
X
qx

Âjðqx; y; tÞeiqxx; (5)

n0ðx; y; tÞ ¼ n00ðyÞ þ
X
qx

n̂0ðqx; y; tÞeiqxx: (6)

The time evolution of the perturbed quantities Âj and n̂0 is

derived by substituting Eqs. (5) and (6) into (3), and

retaining up to 1st order of Âj and n̂0. The resulting

coupled equations with spatially dependent coefficients
can now be solved numerically.

The results are summarized in Figs. 2 and 3. For strained
films, there exists a range of wave number qx within which

initial small random perturbations of Âj and n̂0 grow ex-

ponential in time near the film/liquid surface and decay to
zero in the solid and liquid bulk regions. A typical example
is shown in the inset of Fig. 2. To obtain an estimate of the
island size, we assume that the Fourier amplitude with
largest growth rate (maximally unstable) determines the
characteristic island wave number QI (¼2�=�I). This
wave number is shown in Fig. 2 as a function of misfit

strain for several values of Bs (which controls the magni-
tude of the elastic constants). This plot reveals two distinct
regimes. For small values of "m, we obtainQI � "2m, while
for large values, QI � "m.
The small "m result is consistent with continuum elas-

ticity theory (i.e., an ATG instability [5,6,14,18]). More
precisely, the ATG instability predicts that the most un-
stable wave vectorQI is proportional to ðE=�Þ"2m, where E
and � are Young’s modulus and the surface tension, re-
spectively. The constant of proportionality depends on the
precise mechanism (i.e., evaporation/condensation, surface
diffusion, or bulk diffusion) which is difficult to decouple
in this model and may also be influenced by the nature of
the liquid-solid interface. To evaluate this prediction, we
have calculated Young’s modulus E analytically in a one-
mode approximation and the surface tension � numerically
as a function of strain and Bs. For small "m, all the data fit
the relationshipQI ¼ ð4=3ÞðE=�Þ"2m very well (see inset of
Fig. 3).
For large "m, it is useful to consider the upper limit on

QI imposed by the discrete nature of the lattice. For the
simple 2D hexagonal lattice considered here, the film can
completely relieve the strain by nucleating dislocations at
an appropriate distance (�R) apart. This distance can be
determined as follows. Let the number of atoms in strained
surface lattice beN (before dislocation nucleation), and the
number of atoms unstrained (after dislocations nucleate) be
M. By definition, the length (L) of the film must obey L ¼
Na ¼ Ma0, where a is the lattice constant of strained film
and a0 is the unstrained, bulk lattice constant. Thus, the
misfit strain is "m ¼ ða0 � aÞ=a ¼ ðN �MÞ=M, and the
average distance between dislocations �R ¼ L=jN �
Mj ¼ a0="m. It is unphysical for the system to produce
islands that are smaller than the wavelength �R needed for
‘‘perfect’’ relaxation (although continuum theory does
make this prediction). A line representing this upper limit
is shown in Fig. 2 (i.e., QI ¼ Qo"m, with Qo ¼ 2�=a0).

FIG. 3. Scaling of island wave vector as a function of misfit
strain; see text for definition of scaled variables. In the inset, the
ATG region at small misfits is expanded.

FIG. 2. Characteristic wave number QI as a function of misfit
"m, for Ly ¼ 4096, � ¼ 0:02, and various values of Bs. The solid

line corresponds to ‘‘perfect’’ relaxation as discussed in the text.
In the inset, the growth of amplitude perturbation is shown for
Bs ¼ 1:0, "m ¼ 7%, and QI ¼ 0:055 as a function of y (the
direction perpendicular to the surface).
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As can be seen in this figure, the numerical results con-
verge to this line in the large "m limit. For more complex
3D multicomponent systems, �R will depend on the details
of the dislocation nucleation pathways which may involve
some intermediate partially relaxed states or be influenced
by compositional inhomogeneities.

The results presented in Fig. 2 can be scaled onto a
single universal curve by assuming that QI is described
by the ATG instability in the small "m limit and by ‘‘per-
fect’’ relaxation in the large "m limit. The crossover of the
two limits occurs when ð4E=3�Þ�2m ¼ Qo�m, yielding a
crossover misfit strain and island wave vector of ��m ¼
3�Qo=4E and Q�

I ¼ 3�Q2
o=4E. If both QI and �m are

scaled at this point, i.e., Q̂ � QI=Q
�
I and �̂m � �m=�

�
m,

the data can be reduced to the scaling curve shown in
Fig. 3. The data convergence to this universal curve works
well for all range of misfits and different values of Bs

(related to materials of different elastic constants), even
for very small �̂m as shown in the inset. Since the argu-
ments presented above do not depend on the sign of the
misfit strain, the scaling results should be valid for both
compressive and tensile strains. However, this is not to
imply thatQI and the crossover parameters (Q�

I and �
�
m) are

the same since film properties (e.g., surface tension �,
liquid-solid interface width, etc.) are very likely to depend
on the sign of the strain.

These scaling results indicate that for pure film systems,
the essential parameter responsible for wavelength selec-
tion and crossover behavior is �=E, not � (surface tension)
or E (Young’s modulus) separately, a factor that would be
valuable for the important issue of quantum dot or island
size control. In addition, the crossover behavior of island
size scaling indicates a more complicated role of misfit
strain on quantum dot evolution, and the identification of
crossover parameters (��m and Q�

I ) should provide a new
avenue in characterizing nanostructure (islands/dots) for-
mation and properties.

In summary, we have developed an approach that incor-
porates continuum elasticity and crystalline symmetry and
gives insight into the mechanisms of strained film insta-
bility and island formation. Based on PFC modeling and
particularly on the analysis of amplitude equations govern-
ing the slowly varying surface profile, we obtain a linear
regime for the island wave number scaling and recover the
continuum ATG instability in the weak strain limit. All
ranges of data are found to obey a universal scaling relation
that characterizes the crossover from the ATG limit to the
‘‘perfect’’ lattice relaxation condition. These results also
emphasize the importance of the crystalline nature of
strained films, which in this work is incorporated by phase
perturbations of the complex, mesoscopic-scale ampli-
tudes (Aj). These amplitudes naturally incorporate non-

linear relaxation processes that are absent in continuum
elasticity theory. Finally, we note that while a linear rela-
tionship between island wave number and misfit strain has

been observed in some experiments (i.e., SiGe=Sið001Þ),
these experiments contain additional factors (such as dif-
fering atomic mobilities of film components) that may
account for such behavior. For this reason, it would be
interesting to experimentally examine this phenomena in
pure systems to directly test the predictions of this work.
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