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We demonstrate that a Peierls dimerization can occur in ferromagnetic spin chains activated by thermal

fluctuations. The dimer order parameter and entanglement measures are studied as functions of the

modulation of the magnetic exchange interaction and temperature, using a spin-wave theory and the

density-matrix renormalization group. We discuss the case where a periodic modulation is caused by spin-

phonon coupling and the case where electronic states effectively induce such a modulation. The

importance of the latter for a number of transition metal oxides is highlighted.
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Structural instabilities of electronic systems can occur
due to the coupling of electronic and lattice degrees of free-
dom (phonons). They are particularly important for quasi-
one-dimensional (1D) systems where the gain in electronic
energy due to a lattice distortion often outweighs the cost
in elastic energy. A well-known example is the Peierls
instability [1] of the 1D free electron system towards a
static lattice distortion determined by the Fermi momen-
tum. For a commensurate distortion, an excitation gap is
opened turning a metallic system into a band insulator.
This Peierls metal-insulator transition plays an important
role, for example, in organic charge-transfer solids [2]. A
related instability occurs for antiferromagnetic (AFM) spin
chains coupled to phonons. Here magnetic energy is gained
by distorting the lattice which can lead to the so-called
spin-Peierls (SP) transition. Although a SP phase transition
was first observed in organic materials [3], it was the
discovery of such a transition in CuGeO3 by Hase et al.
[4] that has led to great interest in these phenomena [5].

Quite recently, another type of Peierls instability for spin
chains has been found which is not driven by spin-phonon
coupling but rather by a coupling of the spins with elec-
tronic degrees of freedom (orbitals). Here a ferromagnetic
(FM) spin chain shows a periodic modulation (dimeriza-
tion) of the magnetic exchange in a certain finite tempera-
ture region while the ground state is the uniform FM state
[6]. In Refs. [7,8], it has been argued that this mechanism is
responsible for the remarkable properties of YVO3 in the
finite temperature C-type AFM phase.

In this Letter, we want to establish general mechanisms
which can drive a Peierls dimerization in FM spin chains.
To highlight the differences between AFM and FM chains,
we will first consider a coupling to lattice degrees of free-
dom. The phonons are often treated adiabatically which is
justified if the phonon frequency is smaller than the Peierls
gap. In the adiabatic approximation the Hamiltonian can be
written as H ¼ Hmag þ Eel, with

Hmag ¼ J
XN
j¼1

f1þ ð�1Þj�gSj � Sjþ1 (1)

and Eel ¼ NK�2=2. Here J is the exchange constant, Sj a

spin S operator at site j, N the number of sites, and K the
effective elastic constant. In the absence of a magnetic
field, the modulation is expected to be commensurate
with wave vector k ¼ �. The dimensionless parameter
� 2 ½0; 1� is given by � ¼ 2gu=ðJa0Þ, where g is the
spin-phonon coupling constant, u the atomic displacement,
and a0 the lattice constant. From Eel ¼ N ~Ku2=2, we find
K ¼ ~KJ2a20=ð4g2Þ. Note that writing H ¼ Hmag þ Eel cor-

responds to the random-phase approximation by Cross and
Fisher [9]. Although the model (1) is strictly 1D, the static,
mean-field (MF) treatment of the three-dimensional pho-
nons allows for a finite temperature phase transition if �ðTÞ
is treated as a thermodynamical degree of freedom deter-
mined by minimizing the free energy.
Let us start with the case where Sj � Sjþ1 ! SxjS

x
jþ1 þ

SyjS
y
jþ1 ¼ ðSþj S�jþ1 þ S�j Sþjþ1Þ=2, i.e., we replace the SU

(2)-symmetric spin exchange by an XX type of interaction.
In this case the sign of J does not matter, and the system
becomes equivalent to a free spinless fermion model by
Jordan-Wigner transformation. The Hamiltonian is then
easily diagonalized by Fourier transformation, and, in the
ground state for small �, one finds a gain in magnetic
energy Emag � �2 ln�. This outweighs the cost in elastic

energy Eel � �2 and constitutes the Peierls instability for
lattice fermions [10]. For the isotropic antiferromagnet
[J > 0, SU(2)-symmetric exchange], field theoretical argu-

ments show that Emag ���4=3 [9]. Again this outweighs

the cost in elastic energy leading to a SP transition and the

opening of a spin gap �� �2=3.
Contrary to the two cases discussed above, there is no

gain in magnetic energy in the ground state for FM cou-
pling J < 0. For � 2 ½0; 1Þ, the ground state is always the
fully polarized FM state. We will show in the following
that thermal fluctuations can, however, activate a Peierls
dimerization. We will use the density-matrix renormaliza-
tion group applied to transfer matrices (TMRG) to study
this effect. The TMRG algorithm is based on a mapping of
the 1D quantum onto a two-dimensional classical system.
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A transfer matrix is then defined allowing it to perform the
thermodynamic limit exactly; i.e., all of the numerical
results presented here will be directly for the infinite sys-
tem. Details of the method can be found in Refs. [11–13].
In addition, we will also apply Takahashi’s modified spin-
wave theory (MSWT) [14] to this problem.

In Fig. 1, the phase diagrams for the S ¼ 1=2 isotropic
AFM and FM Heisenberg models as defined in Eq. (1) are
shown. The phase boundaries and order parameters are
obtained using the TMRG algorithm. For the AFM chain,
we have a dimerized phase for any value of the elastic con-
stant K=jJj at low enough temperatures because the
gain in magnetic energy will always win. The phase tran-
sition is second order, and the evolution of the order
parameter is exemplified for K=jJj ¼ 2 in inset (b) of
Fig. 1. For the FM chain, on the other hand, a dimerized
phase exists only at finite temperatures and only ifK=jJj<
Kc=jJj ’ 0:118. Here we find a tricritical point (TCP) at
ðTTCP=jJj; KTCP=jJjÞ ’ ð0:696; 0:116Þ. For K <KTCP, the
transition is first (second) order if T < TTCP (T > TTCP),
respectively. Inset (a) of Fig. 1 shows that the order pa-
rameter forK=jJj ¼ 0:1 evolves indeed continuously at the
upper phase boundary, although it increases very steeply to
one. Note that, in the small window KTCP <K <Kc, both
the high and the low temperature transition will be first
order.

Phonon fluctuations will modify the phase diagrams for
the AFM and FM chains shown in Fig. 1 in different ways:
For the AFM case, it is known that dynamical phonons will
alter the phase diagram qualitatively [15]. For a given

phonon frequency !, a dimerization will occur only if
the spin-phonon coupling constant g is larger than some
threshold value g0ð!Þ. This corresponds to having a di-
merized phase only if K <K0ð!Þ with a critical effective
coupling constant K0 ¼ ~KJ2a20=ð4g20Þ. For the FM chain,

we find a threshold Kc already in the adiabatic approxima-
tion. In this case, we merely expect a renormalization
Kc ! Kcð!Þ due to phonon fluctuations.
Next, we discuss the application of Takahashi’s MSWT

to this problem. Usual spin-wave theory is modified by
introducing a Lagrange multiplier which enforces a non-
magnetic state at finite temperature. This guarantees that
the Mermin-Wagner theorem is respected. For the isotropic
FM chain, results obtained by MSWT have been shown to
be in excellent agreement at low temperatures with exact
Bethe ansatz results [14,16]. For the dimerized chain, the
unit cell is doubled so that a Holstein-Primakoff trans-
formation with different bosonic operators on the two
sublattices is required. The diagonalized Hamiltonian in

linear spin-wave theory is then given by Hmag ¼ Ne0 þP
kf!þ

k �
y
k�k þ!�

k �
y
k�kg, with e0 ¼ JS2 and the two

magnon branches !�
k ¼ 2jJjSð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2kþ �2sin2k

p
Þ.

The constraint of zero magnetization NS ¼ P
kfnBð!�

k Þ þ
nBð!þ

k Þg is implemented by a chemical potential �, with

nBð!�
k Þ ¼ fexp½ð!�

k ��Þ=T� � 1g�1 being the Bose fac-

tors. For t=ð1� �2Þ � 1, where t ¼ T=ðjJjSÞ is the re-
duced temperature, we find analytically

4S2�=T ¼ �t=ð1� �2Þ þOð½t=ð1� �2Þ�3=2Þ. In the

same limit the free energy per site is given by ðf�
e0Þ=T ¼ �½t=ð1� �2Þ�1=2 þOð½t=ð1� �2Þ�Þ, with � ¼
��ð3=2Þ=ð2 ffiffiffiffi

�
p Þ. For the FM chain, we have therefore a

gain in magnetic energy due to a dimerization�� T3=2�2.
To calculate spin correlation functions, it is essential to

take also quartic bosonic terms into account. For the bond
correlations BsðwÞ � hS2j � S2j�1i, this leads to

BsðwÞ ¼
�
1

N

X
k

fnBð!�
k Þ � nBð!þ

k Þgf�k
�
2
; (2)

with f�k ¼ ðcos2k� �sin2kÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2kþ �2sin2k

p
. The plus

(minus) sign in hS2j � S2j�1i and in f�k applies for the

strong (weak) bond. We define

��
SS ¼ hS2j � S2jþ1i � hS2j � S2j�1i; (3)

with ��
SS acting as an order parameter for the dimerized

chain. In Fig. 2, the MSWT and TMRG results for ��
SS are

compared for the case of S ¼ 1. The agreement is good for
temperatures up to T=jJj � 1, in particular, for small �. We
also note that the MSWT gives a value in the fully dimer-
ized case (� ¼ 1) which is in good agreement with the
exact result; however, it predicts corrections for � ¼ 1� �
(� � 1) to be of order �2, whereas the numerical results
and perturbation theory show that the corrections are of
order �. In the inset of Fig. 2, it is shown that the phase
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FIG. 1 (color online). Phase diagrams for the dimerized AFM
and FM S ¼ 1=2 Heisenberg chains. The dotted-dashed line
depicts the second-order SP transition from the uniform (U) to
the dimerized (D) phase for the AFM chain. For the FM chain,
theD phase exists only at finite T (in units of kB ¼ 1) and only if
K < Kc ’ 0:118jJj—the transition is either second or first order,
as shown by solid and dashed lines, respectively, and changes its
character at the TCP. The insets show the order parameter �ðTÞ
for (a) the FM chain with K=jJj ¼ 0:1 and (b) the AFM chain
with K=J ¼ 2 (the lines are guides to the eye).
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diagrams for model (1) with S ¼ 1=2 and S ¼ 1 are almost
identical, if the axes are scaled appropriately.

In Fig. 3(a), the correlation functions on the strong and
weak bonds for S ¼ 1=2 are shown separately as a function
of temperature for different �. We want to emphasize again
that for � 2 ½0; 1Þ the ground state is still the usual FM
state and the correlations on the weak and strong bond are
thus identical: Bs ¼ Bw ¼ 1=4. The difference between
the correlations on the strong and on the weak bond, ��

SS,

shown in Fig. 3(b) is therefore zero at T ¼ 0, goes through
a maximum at some finite temperature, and goes to zero
again for T ! 1 where BsðwÞ ! 0.

Another way of looking at the response of the FM chain
to a periodic modulation is to study the entanglement of a
weak or a strong bond with the rest of the system. Here we
will concentrate on the case S ¼ 1=2. The entries of the
two-qubit reduced density matrix ~� for a bond can be
related to the correlation functions on that bond [17,18].
The concurrence for ~�—an entanglement measure com-
monly used at zero temperature—is zero for FM correla-
tions. More interesting is the behavior of the entanglement
entropy Sent

sðwÞ ¼ �Tr~� ln~�. It is again zero for the fully

polarized ground state which is a pure state. At finite
temperature we have for � ¼ sðwÞ

S ent
� ¼

�
B� � 1

4

�
ln

�
1

4
� B�

�
�

�
B� þ 3

4

�
ln

�
1

4
þ B�

3

�
:

(4)

For T ! 0, BsðwÞ ! 1=4 and Sent
sðwÞ ! ln3, see Fig. 3(c).

Sent
sðwÞ therefore jumps signaling the phase transition at T ¼

0. For T ! 1, on the other hand, BsðwÞ ! 0 and Sent
sðwÞ !

2 ln2. Quite generally, the entanglement entropy for a seg-
ment with n sites will go to nST for T ! 1, where ST is
the thermal entropy per site [19]. At any fixed finite tem-
perature the entanglement entropy Sent

sðwÞ decreases (in-

creases) on the strong (weak) bond with increasing
modulation �; see Fig. 3(d). The gain in magnetic energy
at finite temperature due to a dimerization might therefore
also be seen as a gain in entanglement entropy on the weak
bonds.
Let us finally discuss the relevance of a thermally driven

dimerization for systems with orbital degrees of freedom.
This mechanism is particularly important for transition
metal oxides with perovskite structure where the valence
electrons are situated in the t2g orbitals. Because t2g orbi-

tals are not bond oriented, the electron-phonon coupling is
weak so that we might ignore lattice degrees of freedom to
first approximation. With appropriately rescaled parame-
ters, the physics discussed below is almost independent of
the spin value S. For definiteness, we will consider in the
following the case of an effective spin S ¼ 1 appropriate
for systems with a 3d2 valence electron configuration, as,
for example, YVO3, and a twofold orbital degeneracy
described by an orbital pseudospin 	 ¼ 1=2. A 1D
Hamiltonian reflecting the spin-orbital physics for such a
system is given by [20]

HS	 ¼ J
X
j

ðSj � Sjþ1 þ 1Þ
�
�j � �jþ1 þ 1

4
� 
H

�
; (5)

where J > 0 is the superexchange and 
H is proportional to
the Hund’s coupling and promotes FM spin correlations.
Using a MF decoupling, which is reasonable for FM spin
correlations [21], we writeHS	 ’ HS þH	, whereHS (H	)
is the Hamiltonian for the spin (orbital) sector. If we allow
for a dimerization in both sectors, then HSð	Þ is—up to a

constant—given by Eq. (1) with J ! JJ Sð	Þ, � ! �Sð	Þ,
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FIG. 3 (color online). TMRG results for S ¼ 1=2: (a) BsðwÞ for
the strong (solid line) and the weak bond (dashed line), (b) ��

SS

for the same values of � as in (a), (c) the entanglement entropy
SentsðwÞ for different � as a function of temperature, and (d) SentsðwÞ as
a function of � for two temperatures.
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FIG. 2 (color online). Order parameter ��
SS (3) as a function of

� for the S ¼ 1 dimerized FM. The lines (symbols) denote the
MSWT (TMRG) results. The inset shows the phase diagrams
obtained by TMRG for the Hamiltonian (1) with S ¼ 1=2 (solid
line) and S ¼ 1 (dashed line) with both axes scaled appropri-
ately. The phase transition is first (second) order for T < TTCP

(T > TTCP). The TCP is marked by a dot (square) for S ¼ 1=2
(S ¼ 1).
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and S representing the spins S ¼ 1 or the orbital pseudo-
spins 	 ¼ 1=2, respectively. The effective superexchange
constants are given by J S ¼ �þ

		=2þ 1=4� 
H and
J 	 ¼ �þ

SS=2þ 1, with ��
		 defined analogously to ��

SS.

Strong quantum fluctuations for pseudospin 1=2 and 
H >
0will favor AFM coupled orbitalsJ 	 > 0 and FM coupled
spins J S < 0. The dimerizations are then given by �S ¼
��

		=ð2J SÞ and �	 ¼ ��
SS=ð2J 	Þ. This means that the

exchange constants and the dimerizations for each sector
are determined by the nearest-neighbor correlations in the
other sector and therefore have to be calculated self-
consistently. We can simplify this procedure by noting
that �þ

SSð		Þ show only a weak dependence on dimerization

and temperature for low temperatures. We therefore fix
J Sð	Þ by using the values for �þ

SSð		Þ obtained for an

undimerized chain at zero temperature. This leads to J 	 ¼
2 and J S ¼ 1=2� ln2� 
H [22]. Now the dimerizations
�Sð	Þ can be easily determined self-consistently. The results

for 
H ¼ 0:1—which is a realistic value for cubic vana-
dates—are shown in Fig. 4. For 0:10 & T=J & 0:49, the
self-consistent MF decoupling leads to nonzero values for
�Sð	Þ. The evolution of the dimerization parameters in this

temperature regime has a dome-shaped form with a maxi-
mum at T=J � 0:2. In agreement with Fig. 1, the dimeri-
zation in the FM spin chain is much larger than the
dimerization in the AFM orbital chain, and at T=J ¼ 0:2
we have �S � 0:86, which is already close to perfect
dimerization (Fig. 4). This underlines that the thermally
activated dimerization in the FM chain is the driving force
behind the finite temperature dimerized phase for the spin-
orbital chain. The phase transitions at finite temperature
between a uniform and a dimerized phase are a conse-
quence of the MF decoupling. Such phase transitions will
not occur for the strictly 1D model (5). Nevertheless,
numerical calculations for this model [6] show that a
dimerization is the leading instability at temperatures
which support the dimerized phase in the MF decoupling
solution.

In summary, we have shown that a dimerization can
occur in FM spin chains but has to be activated by thermal
fluctuations. The gain in magnetic energy at finite tem-
peratures can be related to an increased entanglement
entropy on the weak bonds. For a FM chain with spin-
phonon coupling, we have derived the phase diagrams as a
function of temperature T and the effective elastic constant
K for spin values S ¼ 1=2 and S ¼ 1. Thermodynamic
properties of the dimerized FM chain can be calculated
analytically with good accuracy for temperatures T & jJjS
by a MSWT. Remarkably, this approach works for all
dimerizations � 2 ½0; 1� if quartic terms are taken into
account appropriately. For a system of coupled FM spin-
1 and AFM orbital pseudospin-1=2 degrees of freedom, we
found, using a mean-field decoupling, a finite temperature
dimerized phase. This shows that a dimerization is a uni-
versal instability of FM chains at finite temperatures and
may be triggered by the coupling to purely electronic
degrees of freedom. This latter mechanism seems to be
relevant for many transition metal oxides with (nearly)
degenerate orbital states.
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[2] G. Grüner, Density Waves in Solids (Addison-Wesley,

Reading, MA, 2000).
[3] J.W. Bray et al., Phys. Rev. Lett. 35, 744 (1975).
[4] M. Hase et al., Phys. Rev. Lett. 70, 3651 (1993).
[5] D. C. Johnston et al., Phys. Rev. B 61, 9558 (2000).
[6] J. Sirker and G. Khaliullin, Phys. Rev. B 67, 100408(R)

(2003).
[7] C. Ulrich et al., Phys. Rev. Lett. 91, 257202 (2003).
[8] P. Horsch et al., Phys. Rev. Lett. 91, 257203 (2003).
[9] M. C. Cross and D. S. Fisher, Phys. Rev. B 19, 402 (1979).
[10] P. Pincus, Solid State Commun. 9, 1971 (1971).
[11] Density-Matrix Renormalization, Lect. Notes Phys.

Vol. 528, edited by I. Peschel et al. (Springer, Berlin,
1999), and references therein.

[12] S. Glocke et al., in Computational Many-Particle Physics,
Lect. Notes Phys. Vol. 739 (Springer, Berlin, 2008).
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